
An Introduction to
3D Computer Graphics

Version 6.0 PDF 1995

Exploring Photo-Realism
with MacRenderMan

© Malcolm A. Kesson

CONTENTS

1 Introduction

Interactivity v scripting
Illusions and interfaces
RenderMan
What is a script?
Why use scripting?
What’s the catch?

2 Getting Started

Overview
Using a default camera
Setting a perspective view
Rotating an object
Scaling
Assembling an object
Syntax and the structure of a RIB file

3 Transformations

Translation
Rotation
Scaling
Skewing
Applying transformations
Applying sequences of transformations

4 Shading – the basics

Using lights and materials
Applying an image to an object
Preparing an image for texture mapping
Using an image to displace a surface
Avoiding rendering errors and improving performance

5 Shaping Up – Library Objects and Polygons

Overview – quadrics and polygons
RenderMan’s library of quadric surfaces
Placing objects in the world

Positioning the world relative to the camera
Modelling a coffee mug
The effects of scaling and translation
Reusable geometry
Playing with materials – surface shaders wood, carpet and spatter
Making a composition the wrong way
Making a composition the correct way
Another way of grouping objects
Summary of methods relating to the grouping of objects
A simple polygon model (to be added)

6 An Improved Camera

Overview
Depth of field
Motion blur
Field of view
Matching a VR camera to a real camera

7 Animation

Using FrameUP
Animated texture and displacement maps

8 Basic Lighting

Overview
Defining a light source
Types of light sources – descriptions
Types of light sources – examples
An example script
Reference
Positioning lights in space

9 Advanced lighting – Casting Shadows

Overview
An example script
The shadow algorithm: how it works
An example animation

10 Importing Fragments

Overview
A sample fragment
Importing correctly
Importing incorrectly
Fragments and objects
Restrictions

Appendix A – Overview of MacRenderMan

Appendix B – RenderMan Quick Reference

Appendix C – Shaders Reference

Appendix D – Projects

Separating Shape from Shading
Combining the ‘real’ and the ‘imaginary’
Three Dimensional Icons for a Graphical User Interface

These notes are intended to explain the basics of theRenderMan system by
providing a series of examples of its use in theMacintosh environment.
Although a number of exercises and projects have been included they will
only be effective when used by those who wish to explore and experiment
with the RenderMan system.

I wish to acknowledge the support I received from PIXAR, especially in
graciously providing several pre-release versions of their photo-realistic
renderer that was being ported to the new RISC based Power-Macintosh
computers at the time that I was preparing this booklet for teaching under-
graduate students of graphic design the principles of 3D computer graphics.

Malcolm Kesson

April 1994
Wellington
New Zealand

Preface

In Progress

The following sections are incomplete,

5 Shaping Up
A sub-section dealing with the way in which RenderMan handles polygons
has yet to be added. Several modelling exercises using polygons will also
form part of this chapter.

10 Importing Fragments
The contents of this chapter are almost complete but some diagrams have
yet to be included and the body copy still requires some editing.

Additional sections that may be added later include a general explanation
about “viewing” and shading as well as the following,

11 Advanced Texture Mapping
A chapter dealing with the relationships between cartesian space, texture
space and parameter space. Use of texture ‘s’ and ‘t’ parameters to control
the texturing of polygons and the use of the command TextureCoordinates
to likewise control the texturing of quadric surfaces.

12 Solid Modelling
A chapter dealing with the principles of boolean operations on sets of
enclosed objects.

Malcolm Kesson
April 9th 1995

Most designers, especially those who are new to computer systems, assume
the only way to work with a computer is to use interactive software. Indeed,
graphical user interfaces (GUI’s, pronounced goo-eez) are taken so much for
granted that it may appear strange, if not bizarre, to reject the ease-of-use that
such systems offer in favour of an environment based on text and scripting.
What possible advantage could there be in using a keyboard rather than a
mouse for graphical input? Why exchange pull-down menu’s, floating
windows, dialog boxes and icons for an unfamiliar way of making images that
requires a large investment of time to master and that emphasises thought,
care and perfect attention to detail? The answer to these questions lies
principally in the nature of a GUI.

The problem with interactive software is that their interfaces are designed to
hide the intricacies of the algorithms and techniques upon which they are
based. Infact, just as a conjurer deceptively presents fiction as fact, GUI’s
organise their illusions around metaphors that routinely entice us to accept
the impossible. For example, in illustration software such as Aldus FreeHand
or Adobe Illustrator, users interact with elements of their artwork as if they are
on separate layers. Even operating systems encourage users to perceive
windows as being stacked and ordered into layers. Thus, windows can be
moved to the front or sent to the ‘back’. But the notion that an image on a
computer screen can have depth, let alone be comprised of layers, is pure
fiction. This course is intended to take you behind the illusions in order to
more fully understand the principles of 3D modelling and rendering.

Working in the area of 3D computer graphics without a GUI involves
communicating directly with a software package called a renderer. A renderer
is somewhat like a laser printer but instead of turning a 2D page description,
normally in a computer language called PostScript, into a printed image, it
accepts a 3D scene description and converts, or renders, it as an image that is
either viewed on the computer monitor, or saved as an image file. Because
most renderers are embedded within an interactive modeller or animation
system the ways in which they can be used are strictly limited by the ‘host’
software. Infact, the only people who can really ‘get at the renderer’ are the
programmers who wrote the modelling or animation software!

Renderers also form part of software libraries used on high-end graphics
workstations. But these require a knowledge of a programing language such
as “C”, and traditionally, artists and designers have not been given access to
such skills. Fortunately, there is a renderer that supports the type of commun-
ication that we require–PRMAN is part of the innovative RenderMan system
developed by PIXAR. RenderMan is intended to support the production of
photo-realistic images based on a ‘mini language’ called RIB–RenderMan
Interface Bytestream. The intention of RenderMan is to separate modelling
from rendering. In formulating their scene description standard, PIXAR
established a number of rules by which the characteristics of a virtual world,

Introduction

Interactivity v scripting

Introduction 1•1

Illusions and interfaces

RenderMan

and a virtual camera to view that world, can be communicated to a renderer.
Because RenderMan organises the way modellers can pass information to
renderers, PIXAR refers to their system as an interface. Information about a
3D scene is written as text and is stored in a RIB file. Normally these files are
produced by an interactive modelling or animation application and are rarely
seen by a naive user of a computer system. However, because the details of
the RenderMan Interface have been published by PIXAR, anyone with access
to a word processor can write or edit a RIB file “by hand” and can gain greater
control over the entire image making process. In this course you will use
RenderMan to explore the fundamentals of photo-realistic 3D computer
graphics.

Scripts are used to convey information about a production or performance.
The samples given below are examples of textural and symbolic scripts. What
ever form it takes, a script typically enables an author to pass sufficient
information about the structure of a performance so that it can be, in some
sense, true or faithfull to the original design. To work effectively, a script must
adhere to certain rules that are understood by the author and the performer.
For example, it would be a disaster for an actor playing the role of King Henry
to speak the lines given in italics, “Aumerle locks the door.”

Introduction 1•2

 	 	 Enter Bolingbroke, crowned King Henry, with
 		 	 	 Harry Percy, and other nobles
AUMERLE (rising)
 	 Then give me leave that I may turn the key,		 	 35
 	 	That no man enter till my tale be done.
KING HENRY
 	 Have thy desire.
		 	 	 Aumerle locks the door.
		 	 	 The Duke of York knocks at the door and crieth
YORK (within) My liege, beware! Look to thyself!
 	 Thou hast a traitor in thy presence there.
		 	 	 King Henry draws his sword
KING HENRY (to Aumerle) Villain, I’ll make thee safe.

What is a Script?

Richard II Act 5.3 – scripting a theatrical performance

 (NeXT Digital Press 1988)

The scripting you will use in this course is no different to any other type of
traditional scripting–you will be the author, PRMAN will be the performer
and you will both conform to the rules defined by RenderMan.

If scripting is so powerful it is appropriate to ask why interactive software is so
popular? The answer lies in the breadth and flexibility of modern software
design. In a production environment the majority of tasks a designer needs to
address can be quickly and adequately tackled with interactive software. But
for those who undertake innovative and experimental work, scripting of one
kind or another, can offer significant advantages. At one end of the scale,
scripting can mean writing an entire software package and at the other end it
can mean writing so-called macro’s for a spreadsheet. In an educational
context, and more especially for a third level degree course, an investigative
approach based on scripting means you will learn the general principles of 3D
work rather than a single implementation. However, it should be recognized
that RIB scripts (files) are NOT normally written by hand, but are usually
produced by modelling and animation software and these can handle levels of
modelling detail that would be impossible for any human to reproduce
manually.

The Labanotation System – scripting human movement

low middle high

forward side backward

Why use scripting?

(The New Encyclopaedia Britannica vol 7 page 78)

From Three Pieces for String Quartet (No. 1) by Igor Stravinsky
– notation for scripting music

(The New Encyclopaedia Britannica vol 24 page 530)

Introduction 1•3

The RIB files in this section are intended to guide you through the basics of
working with RenderMan. Each example has been carefully chosen to
introduce a broad selection of concepts relating to 3D computer graphics. The
explanations accompanying each example are quite brief and are only
intended to touch upon the ideas being presented. Don’t worry if the material
looks terribly confusing. As the course unfolds, the principles underpinning
the concepts will be reiterated and illustrated many times over.

When a technical term is used for the first time it is printed in italics. You
should make every effort to understand its meaning before continuing with
the next section, “Shaping Up – Library Objects and Polygons”.

At the conclusion of this section you will be able to

 • write, save and send a simple scene description to PRMAN,
 • set the basic characteristics of a virtual camera,
 • use the basic transformations ie. translation, rotation and scaling,
 • distinguish parameters from RIB statements,
 • differentiate world space from camera space,
 • understand the role of default settings.

 Chapter headings:

Getting Started
Shaping Up–Library Objects and Polygons
Camera
Digital Lighting
Digital Lighting and Shadows
Shading

Getting Started

Overview

Getting Started 2•1

Getting Started 2•2

The purpose of this RIB file is to present a minimal scene to PRMAN and to
introduce the basics of interacting with the scripting and rendering
environment.

The first two lines show the use of the hash symbol # to indicate these lines
are comments and must be ignored by the renderer. Comments can be
included anywhere in a RIB file - they are the equivalent of post-it notices.

WorldBegin is a RIB statement and as such must be spelled exactly as shown
ie. a single word with two capitalisations. Essentially it notifies RenderMan
that objects comprising a scene description–a virtual world–are about to be
defined.

Disk is a RIB statement that defines, by the three parameters (numbers) that
follow it, a flat circular disk situated 1 unit along the z axis, 0.5 units in radius
and a full 360 degrees in extent. Approximately, half the RIB statements (or
commands as they will be referred to) you will use in this course require
parameters. In all cases each parameter must be separated by at least one
space. They may, however, be spread over several lines of text and have
comments at the end of each line, for example,

 Disk
 1 #unit along the z axis
 0.5 #units in radius
 360 #degrees

Finally, WorldEnd indicates the description of the scene, or world, has been
completed. This small RIB file is interesting not just for what it describes but
also for what it omits. Although it does not specify the characteristics of a
virtual camera to view the scene ie. its location and orientation, or the surface
colour and material characteristics of the disk, or how it is lit, the renderer is
able to produce an image because, in the absence of specific information, it
makes several assumptions and uses a number of default settings. In
particular, RenderMan has provided

 • an orthographic view looking along the z axis with the camera and the
 world sharing a common origin,
 • an image called Untitled measuring 320x240 pixels,
 • a matte white surface for the disk that does not require external lighting.

Example 1

RIB

#ortho disk1.RIB
#using a default camera
WorldBegin
 Disk 1 0.5 360
WorldEnd

Getting Started 2•3

#ortho disk1.RIB
#using a default camera

RIB

two comments about the scene, the
first gives the name of the file and
the second is a brief note about the
scene

x

y

z

y

x

z

WorldBegin

the default camera creates an
orthographic view, 320x240 pixels,
with a name supplied by RenderApp

begin describing the world

Disk 1 0.5 360

x

y

z

y

x

z

create a disk situated 1 unit along
the z axis, 0.5 units in radius and
360 degrees in circumference

description of the world complete WorldEnd

initially the origins of the camera
and world coincide

Visualizing example 1

Getting Started 2•4

Example 2

#perspective disk.RIB
#setting a perspective view
Projection "perspective" "fov" 40
WorldBegin
 Translate 0 0 3
 Disk 0 0.5 360
WorldEnd

The purpose of this file is to show the way in which a virtual camera using
perspective projection can be set up before the world is defined and also to
introduce the use of translation to move objects in a scene.

Before the world is defined the statement Projection establishes a perspective
view with a field of vision of 40 degrees - this is one of several statements that
control a virtual camera. Note that two of its three parameters are words. So
that RenderMan does not attempt to interpret them as RIB statements or
commands, textual parameters are always given in quotes ie. “”.

As in the previous example, the scene consists of a single disk but this time
the origin of the coordinate system has been moved 3 units along the z axis
before the disk is defined. The Translate command has three parameters,

 Translate x y z

to move, what may be thought of as a three dimensional cursor around the
world space.

RIB

Getting Started 2•5

Projection "perspective" "fov" 40

RIB

x

y

z

y

x

z

WorldBegin

set the camera to give a perspective
view with a field of vision of 40
degrees, the size and name of the
image are supplied by RenderApp

begin describing the world

Disk 0 0.5 360

x

y

z

y

x

z

create a disk situated at the origin,
0.5 units in radius and 360 degrees
in circumference

description of the world complete WorldEnd

initially the origins of the camera
and world coincide

Translate 0 0 3 move the origin 3 units along the z
axis

x

y

z

y

x

z

Visualizing example 2

RIB

Getting Started 2•6

Example 3

#tube.RIB
#rotating an object
Projection "perspective" "fov" 40
WorldBegin
 Translate 0 0 5
 Rotate -120 1 0 0
 Color 1 0 0
 Cylinder 1 -1 1 360
WorldEnd

In this scene a cylinder is introduced into a world space that has, for the
purpose of better viewing, been rotated and moved away from the camera.
The cylinder has also been coloured.

The RIB statement Cylinder, with four parameters,

 Cylinder radius depth height arc

shows how, like the disk in the previous example, an object from Render-
Man’s library of primitive shapes can be used in a scene. The cylinder and
disk, as well as the other surfaces in the RenderMan library, will be dealt with
in detail in the next section.

This file uses another type of transformation,

 Rotate angle x y z

which in this instance turns the coordinate system 120 degrees anti-clockwise
around the x axis BEFORE the origin is translated 5 units along the z axis of
the world. Although the renderer reads the transformations in the order in
which they appear, it postpones applying them until an object is declared, at
which time it back-tracks and uses the transformations from last to first–like
bullets in the magazine of a gun, the last one loaded is the first to be shot!

A cylinder is created within the redefined world coordinate system. Since the
camera is fixed to the old world origin, the renderer produces an image
looking slightly into the top of the cylinder. Using a fixed camera and trying
to obtain a particular viewing angle by orientating an object in a scene is only
adequate for simple compositions. In the next section the virtual camera is
positioned relative to the world - much like a hand held camera in real
photography.

Color (note the north American spelling) specifies a hue in terms of three
components,

 Color red green blue

A colour is applied to each object until another is declared in the RIB file.

x

y

z

y x

z

1

Getting Started 2•7

Projection "perspective" "fov" 40

RIB

x

y

z

y

x

z

WorldBegin begin describing the world

Cylinder 1 -1 1 360

x

y

create a cylinder, 1 unit in radius,
with a base 1 unit below and a top 1
unit above the origin, 360 degrees in
circumference

description of the world complete
WorldEnd

initially the origins of the camera
and world coincide

Translate 0 0 5
Rotate -120 1 0 0

the transformations are applied in
reverse order; first an anti-clockwise
rotation of 120 degrees around the x
axis, followed by a translation of 5
units along the z axis

set the camera to give a perspective
view with a field of vision of 40
degrees, the size and name of the
image are supplied by RenderApp

y x

z

y

y x

z

2

Visualizing example 3

Getting Started 2•8

Example 4

#scaled tube.RIB
#scaling
Display "scaling" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
WorldBegin
 Scale 0.3 0.3 0.3
 Translate 0 0 5
 Rotate -120 1 0 0
 Cylinder 1 -1 1 360
WorldEnd

This example introduces the idea of scaling the world space, and therefore,
any objects placed in it. It also illustrates the way in which the characteristics
of a virtual camera can be further refined and controlled.

Like the previous example, a cylinder is introduced into a world space that
has been rotated and translated for better viewing. However, in this example
the world space has also been uniformly reduced to 30% of its original scale.

In this and all future scenes, the RIB statements Display and Format are used
to provide additional control over the imagery produced by the virtual
camera. Display uses three parameters to specify

• the name of the image,
• where to put the image, and
• what information the image should contain.

Format uses three numeric parameters

 Format image width image height pixel ratio

Although it appears first, Scale only takes effect after the rotation and
translation have been applied - remember, transformations are applied in
reverse order. The scale statement uses three parameters,

 Scale x y z

to enlarge or reduce a coordinate system along its x, y and z axes.

RIB

Getting Started 2•9

Display "scaling" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

RIB

x

y

z

y

x

z

WorldBegin begin describing the world

Cylinder 1 -1 1 360

x

y

create a cylinder, 1 unit in radius,
with a base 1 unit below and a top 1
unit above the origin, 360 degrees in
circumference

description of the world complete WorldEnd

initially the origins of the camera
and world coincide

Scale 0.3 0.3 0.3
Translate 0 0 5
Rotate -120 1 0 0

the transformations are applied in
reverse order; first an anti-clockwise
rotation of 120 degrees around the x
axis, then a translation of 5 units
along the z axis, followed by the
uniform scaling

set the camera to give a perspective
view with a field of vision of 40
degrees, set the size of the image to
200x150 pixels storing rgb information

y x

z

x

y

z

y x

z

y

y x

z

x

y

y x

z

1 2

3

Visualizing example 4

3
2
1

Getting Started 2•10

Example 5

#goblet.RIB
#assembling an object
Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 150 200 1

WorldBegin
 Scale 1 1 1 #change these to squash and stretch the goblet
 Translate 0 0 5
 Rotate -120 1 0 0

 Color 1.0 0.978 0.34 #gold
 Cylinder 1 0 1.5 360 #container
 Disk 0 1 360 #base of the container
 Cylinder 0.25 -1.5 0 360 #stem
 Disk -1.5 1 360 #base of the goblet
WorldEnd

RIB

In this example a number of basic library shapes are assembled into a simple
goblet.

Color applies a uniform yellow hue to the entire goblet. Experiment with
alternative colour schemes by introducing additional color statements
between each part of the goblet. In particular, add another disk positioned a
little below the rim of the goblet so that it appears to contain a coloured
liquid.

The Scale statement, in effect, does nothing because it applies a uniform
scaling factor of one. Change the scaling factor of each parameter to see how
the goblet can be individually squashed and stretched in height, width and
depth, for example,

 Scale 1 2 1

Conclusion

By the time you finish the examples in this section and, no doubt, completed
a few modifications of your own, you will have been introduced to many
concepts, not only in 3D computer graphics in general, but also in the
abstract world of RenderMan. This section concludes with a brief review of
the syntax of RenderMan and an over-view of the structure of a RIB file.

Twelve RIB statements or commands were used in “Getting Started” - by the
conclusion of the course you will have dealt with approximately 35 of the
entire range of 96 RIB commands. In addition to the hash symbol, the
following statements:

 • Projection/Display/Format – define a virtual camera,
 • WorldBegin/WorldEnd – relate to the concept of a virtual world,
 • Translate/Rotate/Scale – are examples of transformations, and finally
 • Disk/Cylinder – insert library objects/surfaces into the world.

Incidentally, the words “statement” and “command” are used interchangably.
RIB statements form part a language recognised by the renderer. By human
standards it is an impovished language, but nonetheless, it is in its own right
a complete system of communication. Some statements go together in pairs,

 WorldBegin
 WorldEnd

and bracket, what are called blocks of RIB. Other statements have words
and/or numbers, called parameters, associated with them, for example,

 Translate 0 0 5
 Projection "perspective" "fov" 40

that, in the majority of cases, provide essential information without which the
statement makes no sense.

At the beginning of a RIB file only a virtual camera exists, and therefore, all
statements relate to it and to nothing else, for example,

 Display…
 Projection…
 Format…
 (anything else that is appropriate…)

As soon as the renderer ‘reads’ WorldBegin, the camera is ‘frozen’ and all
subsequent statements effect the virtual world, for example,

 WorldBegin
 Objects etc…
 WorldEnd

and finally, WorldEnd marks the completion of the scene description.

Syntax

Structure of a RIB file

Getting Started 2•11

There are four basic methods of changing or modifying 3D objects; they can
be repositioned, reorientated, resized or distorted in space. These alterations
to an object, called transformations, are carried out relative to the origin of the
coordinate system and are known as

 • translation – moving
 • rotation – turning
 • scaling – stretching or squashing
 • skewing – shearing

The illustrations show the effect of applying the transformations to two cones
that are positioned at the origin and a short distance along the x–axis. In each
case the z–axis is pointing “into” the page.

Transformations

Transformations 3•1

Translation

Translate 3 1 0

Rotation

Rotate 45 0 0 1

Scaling

Scale 0.5 0.5 0.5

Notice how the cone shifts toward the
origin of the coordinate system. The
opposite would occur if it were being
enlarged.

y y

x x

Transformations 3•2

The cylinder appears to be large
from the viewpoint of the camera

Skew -30 0 1 0 1 0 0
ie. lean the y–axis 30° toward the x–axis

Rotating and scaling an object that is NOT positioned at the origin of the
coordinate system can give rise to unexpected results. Scaling, for example,
has the effect of moving the surface of an object toward or away from the
origin depending on whether the object is being reduced or enlarged. If the
space into which an object is to be placed is translated, rotated and/or scaled,
it normally makes more sense to apply the translation AFTER the rotation and
scaling – as shown in the lower drawing.

The following illustrations are based on “Getting Started – example 4”, they
are intended to show how swapping the order in which Scale and Translate
are applied results in the cylinder being placed in two entirely different
locations in space. In each example the camera is located at the origin of the
coordinate system.

Applying Transformations

Scale 0.3 0.3 0.3 #3rd
Translate 0 0 5 #2nd
Rotate -120 1 0 0 #1st
Cylinder 1 -1 1 360

1st 2nd

3rd

y

z

Translate 0 0 5 #3rd
Scale 0.3 0.3 0.3 #2nd
Rotate -120 1 0 0 #1st
Cylinder 1 -1 1 360

1st

2nd
3rd

y

z

Skewing

Here the cylinder appears to be
much smaller

y

x

y

x

Transformations 3•3

Applying Sequencies of Transformations

Display "3tubes" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 400 300 1

WorldBegin
 Translate 0 0 7
 Rotate -110 1 0 0
 Rotate 25 0 0 1

 #insert the upright red cylinder
 Scale .5 1 1
 Color 1 0 0
 Cylinder 0.5 -2 2 360

 #insert the green second cylinder
 Rotate 90 1 0 0
 Scale .5 1 1
 Color 0 1 0
 Cylinder 0.5 -2 2 360

 #insert the blue third cylinder
 Rotate 90 0 1 0
 Scale .5 1 1
 Color 0 0 1
 Cylinder 0.5 -2 2 360
WorldEnd

RIB

The purpose of this section is to gain a better understanding of the cummu-
lative effect of applying repeated sets of transformations to a modelling space.
The RIB file shown above illustrates one of the unexpected results that can
occur with transformations. In particular notice how the repeated scaling in
the x direction (shown in bold in the RIB script) not only compounds the
overall squashing of each tube but also reduces the length of the blue tube.
This is quite an unexpected result. After all why should the length of the last
tube be effected along its z–axis by scalings that have only been applied to the
x–axes? The illustrations on the next two pages provide a step-by-step
explanation.

Transformations 3•4

x

The camera coordinate system may be considered to lie on the surface of the
computer screen – as if it were a large view-finder of a virtual camera. At the
beginning of the RIB script the axes shown below (a) mark what is called the
current coordinate system.

The following RIB statements transform what may be thought of as a copy of
the current coordinate system before the first object is inserted into the world.

 _3 Translate 0 0 7
 _2 Rotate -110 1 0 0
 _1 Scale 0.5 1 1
 Cylinder 0.5 -2 2 360

As soon as the cylinder is declared, the transformed copy of the coordinate
system (b) becomes the current coordinate system. Subsequent transformations
will take place with reference to the new axes (c).

y

x

y

z

z

x

y

Notice how the x–axis has been
scaled by 50%.

Camera space

z y

z

x

(a)

(b)

(c)

_3

_1

_2

z

x

y

Transformations 3•5

The second set of RIB statements shown below transform what again may be
thought of as a copy of the current coordinate system.

 Rotate 90 1 0 0
 Scale .5 1 1
 Cylinder 0.5 -2 2 360

Once again as soon as the second cylinder is declared, the copy of the
coordinate system (d) becomes the current coordinate system (e). Notice the
x–axis has received a further reduction in scale.

z

y

x

The last set of RIB statements apply the final transformations prior to inserting
the third cylinder.

 Rotate 90 0 1 0
 Scale .5 1 1
 Cylinder 0.5 -2 2 360

Again the x–axis of the modelling space receives another reduction in scale.
However, because of the rotation of the coordinate system around the y–axis,
the final cylinder is inserted parallel to a coordinate axis that has been
considerably squashed – hence the dramatic reduction in the length of the
cylinder.

z

y

x

z

y

x

The hollow arrows indicate the
transformed coordinates before
they become the current system.

(d)

y

z

(e)

The purpose of this section is to introduce the basics of rendering objects
photo-realistically. It is intended to be a practical introduction and as such it
does not address the theory of rendering.

To produce a realistic image a renderer must be provided with information
about the nature of the light sources and the material and geometric attributes
of the objects in a synthetic scene. In addition, the renderer also requires
information about the virtual camera that is being used to view the scene. For
the sake of simplicity the examples in this section use a camera with a
standard focal length lens, that provides full coloured low resolution images,
eg.

 Projection "perspective" "fov" 40
 Display "untitled" "framebuffer" "rgb"
 Format 300 200 1

A simple object from the RenderMan library of quadric surfaces, eg.

 Sphere 1 -1 1 360

is used throughout this section so that any undue complications that might
arise as a result of modelling a complex object(s) can be avoided.

If computer graphics can be likened to “painting by numbers”, then the
process of rendering a 3D scene can be thought of as “painting with light”.
Therefore, a photo-realistic system such as RenderMan, whose purpose is to
create imagery that is indistinguishable from ‘real’ photography, is useful only
to the extent that it enables users to make subtle changes to the way light
interacts with each part of a scene.

At each stage in the rendering process the way that light is changed as a result
of these interactions is called shading, and RenderMan provides a mechanism
for controlling the outcome of each interaction through the use of what it
describes as shaders. For example, the interaction of light with the surface of an
object is controlled by a surface shader; while the characteristics of the light
produced by a source of illumination are governed by a light source shader. In
addition to these two types of shaders this section also introduces a shader
that controls the way light reacts with an object whose surface has been
displaced to form small bumps and pits – a displacement shader.

Although RenderMan provides seven different types of shaders, this section
only introduces three of them. The following RIB scripts have been carefully
selected to act as templates for your own experiments in the creative use of
Surface, Lightsource and Displacement shaders.

Shading – the basics

Shading – the basics 4•1

Using lights and materials

The following scene consists of a coloured ‘plastic’ sphere that is illuminated
by two lights.

Projection "perspective" "fov" 40
Display "untitled" "framebuffer" "rgb"
Format 300 200 1

Translate 0 0 5
Rotate -120 1 0 0
Rotate 25 0 0 1

WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.1
 LightSource "distantlight" 2 "intensity" 1.5 "from" [0 0 4] "to" [0 0 0]
 Color 1 0 0
 Surface "plastic"
 Sphere 1 -1 1 360
WorldEnd

RIB

Of the two light sources used to illuminate the scene the first provides a very
small amount of background, or ambient lighting. The second light is
positioned directly ‘above’ the sphere and is pointing toward the origin of the
coordinate system and hence toward the centre of the sphere. Both "ambient-
light" and "distantlight" are provided by RenderMan as part of a basic library
of four types of light sources, the others are "pointlight" and "spotlight".

The surface of the sphere has been assigned the reflective properties of plastic
eg.

 Surface "plastic"
 Sphere 1 -1 1 360

(Using a shiny material makes it somewhat easier to see how the high-lights
respond to any changes that are made to the position of the light sources.)
RenderMan supplies a small number of materials eg. plastic, wood, granite,
carpet etc., that can be used with the Surface statement. Each material has its
own way of being “tuned” to the individual requirements of a scene. For
example, the sphere could have been given the properties of a very matte and
non-reflective roughened plastic with the following statement,

 Surface "plastic" "Ks" 0.1 "roughness" 0.5

The surface shader "plastic" can use five parameters (the default values for
these are given in parentheses), namely,

 "Ka" response to ambient light (1.0),
 "Kd" diffuse reflections (0.5),
 "Ks" specular reflections (0.5),
 "roughness" graininess of the surface (0.1), and finally,
 "specularcolor" the colour of the high-lights ([1 1 1]).

Shading – the basics 4•2

Applying an image to an object

The scene used in this example is very similiar to the first except that a surface
shader called "texmap" is used to ‘wrap’ a 2D image around the sphere – a
technique known as texture mapping,

 Surface "texmap" "texname" ["your picture.tx"] "maptype" 2

The term texture in the context of 3D computer graphics is a little misleading
because it only refers to variations of the colour of a surface, it does not imply
anything about its structure or roughness. Since there are a number of ways an
image can be wrapped around an object, "texmap" must be told to use
"maptype" 2 ie. spherical mapping. Before "texmap" can apply an image to a
surface, the image must first be used to generate an intermediate texture file.
The following statement does the necessay conversion,

 MakeTexture "your picture.tiff" "your picture.tx" "periodic" "periodic"
 "gaussian" 2 2

The main thing to note is that the image to be used as the source for the
texture file, which in this instance is called "your picture.tiff", is located in the
same folder as the RIB file itself – otherwise the renderer has no way of
knowing where to find the appropriate file. Generally, picture files are either
created or modified using PhotoShop. It is essential they are stored as RGB
files rather than, say, gray scale images. Once an image has been used to create
a texture file the MakeTexture statement can be ‘commented-out’.

The purpose of the last part of the MakeTexture statement ie. "periodic"
"periodic" "gaussian" 2 2, is to allow the texture to be repeatedly tiled over the
sphere should that be necessary and to ensure the resulting texture map has a
smooth, or anti-aliased, appearance. Like many of the area’s touched upon by
this section, discussions about the finer details of texture mapping are dealt
with elsewhere.

Projection "perspective" "fov" 40
Display "untitled" "framebuffer" "rgb"
Format 300 200 1

Translate 0 0 5
Rotate -120 1 0 0
Rotate 25 0 0 1

MakeTexture "your picture.tiff" "your picture.tx" "periodic" "periodic" "gaussian" 2 2

WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.1
 LightSource "distantlight" 2 "intensity" 1.5 "from" [0 0 4] "to" [0 0 0]
 Surface "texmap" "texname" ["your picture.tx"] "maptype" 2
 Sphere 1 -1 1 360
WorldEnd

RIB

Shading – the basics 4•3

Preparing an image for texture mapping

Scan and/or modify a graphic using PhotoShop, save it as either a TIFF or a
PhotoShop 2.5 file. Even if it is a monochrome image be sure to manipulate it
in RGB mode within PhotoShop.

Reduce the graphic to a square format by choosing “Image Size…” from the
“Image” menu item. The Image Size dialog box will allow the graphic to be
resized to a square aspect ratio, say 800 x 800 pixels.

“Select All” using the Select menu item then rotate the graphic 180 degrees
with the “Rotate” command under the Image menu.

Use “Save As…” to store the graphic as a TIFF file in the same folder as the
RIB file that will use it for texture mapping.

DO NOT MODIFY THE ORIGINAL GRAPHIC – ALWAYS WORK ON A
COPY.

Although the Macintosh operating system does not require file extensions,
make sure the image file is named with a “.tiff” extension eg.� me.tiff. Naming
image files and RIB scripts with “.tiff” and “.rib” extensions makes them very
easy to identify on the desktop. It is advisable to compress the file using LZW
compression.

Within the RIB script convert the graphics file to a texture file with the
statement,

 MakeTexture "me.tiff" "me.tx" "periodic" "periodic" "gaussian" 2 2

Once the RIB script has been used successfully the MakeTexture statement can
be commented-out ie.

 #MakeTexture "me.tiff" "me.tx" "periodic" "periodic" "gaussian" 2 2

This will ensure that subsequent renderings will be completed as quickly as
possible. Of course if the original graphics file is altered then a new texture file
must be produced, in which case the comment (ie. #) must be removed.

Use the surface shader “texmap” to wrap the texture file around the sphere.

 Surface "texmap" "texname" ["me.tx"] "maptype" 2
 Sphere 1 -1 1 360

The “texmap” surface shader allows the same parameters as the “plastic”
shader (ie. Ka, Kd, Ks, roughness and specularcolor) to be used to control the
way light reflects from the surface of the texture map.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Shading – the basics 4•4

Using an image to displace a surface

In this example an image is used to upset or displace the surface of a sphere –
a technique known as displacement mapping. Similiar to the surface shader
“texmap”, the “emboss” displacement shader requires an image file to be
converted to an intermediate texture file ie.

 MakeTexture "your picture.tiff" "your picture.tx" "periodic" "periodic"
 "gaussian" 2 2

Again you must ensure the image to be used as the source for the displace-
ment map is located in the same folder as the RIB file itself. A tiff file to be
used as a source image for displacement mapping can be saved in either
PhotoShop’s gray-scale or rgb mode. However, gray scale images give a more
pronounced embossing effect. Once an image has been used to create a texture
file the MakeTexture statement can be ‘commented-out’ eg.

 #MakeTexture "your picture.tiff" "your picture.tx" "periodic" "periodic"
 "gaussian" 2 2

Unlike a technique called “bump mapping”, displacement mapping really
does make changes to the geometry of the surface to which it is applied. It is,
therefore, superior to bump mapping which only makes a surface appear to be
bumpy. The “emboss” displacement shader must be given the name of a
texture file that it will use for embossing ie.

 Displacement "emboss" ["your picture.tx"] "Km" 0.03

It should also be given a reasonable value for the parameter “Km” which sets
the magnitude of the embossing. The “emboss” shader responds to the gray
values in the texture file – lighter parts of the image are ‘pressed’ deeper into
the surface. The default value for “Km” is 0.03.

Projection "perspective" "fov" 40
Display "untitled" "framebuffer" "rgb"
Format 300 200 1

Translate 0 0 5
Rotate -120 1 0 0
Rotate 25 0 0 1

MakeTexture "your picture.tiff" "your picture.tx" "periodic" "periodic" "gaussian" 2 2

WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.1
 LightSource "distantlight" 2 "intensity" 1.5 "from" [0 0 4] "to" [0 0 0]
 Displacement "emboss" "texname" ["your picture.tx"] "Km" 0.03
 Sphere 1 -1 1 360
WorldEnd

RIB

Shading – the basics 4•5

Avoiding rendering errors and improving performance

The renderer uses each objects bounding box to quickly determine where their
surfaces are located in a scene. In this way it avoids trying to render “empty
space”. However, when the surface of an object is shifted as a result of
displacement mapping, PRMAN may make severe rendering errors. The
renderer literally ignores those parts of the object that have been displaced
outside their bounding box. RenderMan provides a mechanism by which the
renderer can be warned about such displacements eg.

 Attribute "bound" "displacement" [0.2]
 Displacement "emboss" ["your picture.tx"] "Km" 0.03
 Shere 1 -1 1 360

As long as it appears before the name of the object, Attribute can be inserted
before or after the Displacement statement. Unfortunately, even though the
displacement magnitude is set with the Km factor their is no way of knowing
the exact Attribute value to use. In the example shown above it is set to 0.2 but
often 0.1 is enough to prevent rendering errors from occuring.

Rendering operations that involve texture files require more memory than
those that don’t. To ensure it can operate on computers with modest amounts
of memory, RenderMan only sets aside a small amount of memory for
working with textures. To improve performance an option may be set to
inform the renderer to work with larger “chunks” of texture ie.

 Option "limits" "texturememory" [4096]

The value “4096” specifies the number of Kbytes (4 MB) to set aside for
memory to be used to store information read from a texture file. If you wish to
use this option place it at the beginning of the script – options effect the whole
scene and must be set before the camera and world are described.

Shading – the basics 4•6

Bounding boxes

Memory and speed

This section explores the ways that objects are defined in a virtual world.
Because our 3D worlds are described by hand written RIB files they will be
relatively simple. However, this is not a disadvantage because it will focus
attention on imparting as much visual interest through the use of careful
shading techniques and sensitive lighting, rather than gratutious complexity
obtained all too easily by the use of an interactive modelling system. Before
embarking upon the intricacies of lighting and shading some competence
must be gained with modelling. This section is designed to provide you with
these skills.

“Shaping Up” takes an in-depth look at two types of surfaces commonly used
to construct virtual models, namely, quadrics and polygons. Sophisticated
modellers also use surfaces based on curves called splines. If you have used
an illustration program such as Adobe Illustrator or Aldus FreeHand you
would have employed 2D splines to create curves. However, 3D splines are an
advanced topic of study and will not be addressed in this course.

Particular use will be made of the library of shapes, or primitives as they are
sometimes called, that are built into RenderMan. These pre-defined surfaces
are based upon mathematical expressions called quadratic equations, hence
their general name of quadric surfaces. There are seven surfaces in the library
and they are illustrated on the next two pages. Each quadric has its own set of
parameters that allow its form to be accurately specified. The meaning of these
parameters and examples of their use are given. In addition to being described
by an equation they are also surfaces of revolution. That is, they are formed by
spinning a line or curve around a central axis. Most modelling programs offer
these primitives because it is easy to assemble them into composite models.
Unlike many renderers RenderMan does not approximate quadrics in any
way and so renders them with smooth silhouettes.

The other type of surface that will be used is a polygon - a flat shape enclosed
by straight edges. Traditionally, polygons have been very important in 3D
computer graphics because of the ease with which they can be

 • internally represented by modellers and renderers,
 • assembled into a skin or mesh that approximates a desired form, and
 • rendered in a variety of ways to give the illusion of smoothness.

The straight edges of a polygon are defined by a sequence of 3D vertices each
of which is specified by three numbers – its x, y and z coordinates. Since even
simple polygon meshes can consist of dozens of polygons – each consisting of
at least three vertices (ie. triangles), it will only be feasible for us to describe
very simple surfaces.

Shaping Up – library objects and polygons

Overview

Shaping Up 5•1

Quadrics

Polygons

z

y

x

theta max

zmax

zmin

radius

RenderMan’s Library of Quadric Surfaces

z

y

x

z

y

x

theta max

height

radius

z

y

x

theta max

zmax

zmin

radius

height

radius

theta max

Disk 0.5 1.0 300 (example)

Cone 1.75 1.0 270

Sphere 1.0 -0.5 0.8 270

Cylinder 1.0 -0.5 1.0 300

Cone height radius thetamax

Cylinder radius zmin zmax thetamax

Sphere radius zmin zmax thetamax

Disk height radius thetamax (syntax)

Shaping Up 5•2

Shaping Up 5•3

y

zmax

zmin

z

y

x

theta max
point1

point2

z

y

x

theta max

major rad

min rad

phi min

phi max

x

z

theta max

RenderMan’s Library of Quadric Surfaces - continued

Torus 1.0 0.3 90 320 300

Paraboloid 1.0 0.15 1.2 300

Hyperboloid -0.3 1.0 -1.0 0.7 0.7 1.0 300

Torus major rad min rad phimin phimax thetamax

Paraboloid radius zmin zmax thetamax

Hyperboloid point1 point2 thetamax

radius

RIB

Shaping Up 5•4

Example 1 - don’t forget the inside!

#better goblet.RIB
#adding an inside surface
Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 40 "from" [4 2 4]
 Translate 0 0 5
 Rotate -120 1 0 0

 Surface "plastic"
 Color 1.0 0.9 0.3 #gold
 Cylinder 1 0 1.5 360 #container
 Disk 0 1 360 #base of the container
 Cylinder 0.25 -1.5 0 360 #stem
 Disk -1.5 1 360 #base of the goblet

 Translate 0 0 1.5 #move the origin to the top of the goblet
 Sphere 1 -1 0 360 #hemi-spherical inside surface
WorldEnd

This example introduces the first of the library shapes – a sphere. It also uses
two new RIB statements, LightSource and Surface. 3D computer graphics
has developed a rich set of lighting and surface texturing techniques that can
dramatically alter the appearance of an object. Although the concepts are
dealt with in detail in later sections, light sources and material attributes can
still be used effectively, even without elaborate explanations, to add realism
to a model.

With the exception of those lines marked in italics, this file is the same as the
final example of the previous section. At the end of the scene description the
origin is moved to the top of the goblet and the lower half of a sphere is
placed within the container by the RIB command,

 Sphere radius zmin zmax thetamax

A (point) light source is oriented to high-light the curved surfaces of the
goblet. The harshness of the lighting can be reduced by inserting this line,

 LightSource "ambientlight" 2 "intensity" 0.2

immediately after the first light source statement. The RIB command Surface,
followed by the name of a material in the RenderMan library acts much like
Color inthat all subsequent objects acquire the chosen characteristics.
Although more will be said about materials and surface textures, you may
like to experiment by substituting the parameter “plastic” for any one of
those shown in the list given opposite. Later you will be shown how to
control the characteristics of each material.

carpet
cloth

cmarble
constant
finemetal

Matte
metal

paintedplastic
plastic

rmarble
rsmetal

shinymetal
spatter

stone
wood

Shaping Up 5•5

Placing objects in the world

Cylinder 1 0 1.5 360

RIB

The actions of some of the RIB statements in the first example are illustrated
below. In each case the position of the x–y plane is indicated by a grid. The
surface being created is shown in the heavier line weight and the parameter(s)
responsible for positioning the surface in the z direction are shown in bold.

Disk 0 1 360

Cylinder 0.25 -1.5 0 360

Disk -1.5 1 360

Translate 0 0 1.5
Sphere 1 -1 0 360

Shaping Up 5•6

Example 2 - adding a rim and moving the camera

#goblet with rim.RIB
#adding a rim
Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 0 5
Rotate -120 1 0 0

WorldBegin
 LightSource "pointlight" 1 "intensity" 50 "from" [4 2 4]
 LightSource "ambientlight" 2 "intensity" 0.2

 Surface "plastic"
 Color 1.0 0.8 0.3 #gold
 Cylinder 1 0 1.5 360 #container
 Disk 0 1 360 #base of the container
 Cylinder 0.25 -1.5 0 360 #stem
 Disk -1.5 1 360 #base of the goblet

 Translate 0 0 1.5 #move the origin to the top of the goblet
 Cylinder 0.9 -1.4 0 360
 Disk -1.4 0.9 360
 Torus 0.95 0.05 0 180 360
WorldEnd

Although this example demonstrates the use of a torus, its main feature is the
way the transformations,

 Translate 0 0 5
 Rotate -120 1 0 0

that were previously used to rotate and move the goblet within the world
space are now effecting the whole world. Remember, all RIB statements prior
to WorldBegin refer to the way the world is oriented with respect to the
camera. Because it makes more sense to change the camera–world
relationship, as shown by the illustration on the next page, it will no longer be
necessary to rotate and move individual objects to obtain a better view of
them.

After a cylindrical liner and a flat base have been added to the inside of the
goblet a rounded rim is created with the Torus statement,

 Torus major rad min rad phimin phimax thetamax

Try to add another disk to the base of the goblet and provide it with either a

RIB

x

y

z

y x

z

Shaping Up 5•7

Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

RIB

display the graphic in a window titled
"goblet", 200 by 150 pixels in size,
use a camera with a 40 degree field of
vision and include rgb colour data

initially the origins of the camera
and the world coincide

x

y

z

y

x

z

rotate the world -120 degrees
around the x axis

move the world 5 units along the z
axis of the camera

since transformations occur in
reverse order the rotation is followed
by the translation

x

y

z
y x

z

Translate 0 0 5
Rotate -120 1 0 0

"freeze" the camera - now only use
the world coordinates

WorldBegin
 (assemble the goblet)

x

y

z y
x

z

WorldEnd scene description complete

Positioning the world relative to the camera

#coffee mug.RIB
#modifying the goblet
Display "mug" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 -0.5 5
Rotate -120 1 0 0
Rotate 45 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 50 "from" [4 4 4]
 LightSource "ambientlight" 2 "intensity" 0.25

 Surface "plastic"
 Color 0 0 1 #fully saturated blue
 Cylinder 1 0 1.5 360 #mug
 Disk 0 1 360 #base of the mug
 Translate 0 0 1.5 #move the origin to the top
 Cylinder 0.9 -1.4 0 360 #lining of the mug
 Disk -1.4 0.9 360 # bottom of the mug
 Torus 0.95 0.05 0 180 360 #mug rim

 Translate 0 1 -0.75 #move the origin to the back, and lower it half way down the mug
 Rotate 90 0 1 0 #rotate the origin so that the handle will be vertical
 Torus 0.6 0.1 0 360 180 #create a handle
WorldEnd

In this example some minor alterations to the scene have changed the goblet
into a coffee mug. The statements relating to the stem and base have been
removed and those shown in bold have been added or altered. However, the
most important point to notice about this file is the way the world is rotated 45
degrees clockwise about the z axis before it is tipped back 120 degrees. In all
the previous examples the camera was vertically aligned with the y axis of the
world. If you place a comment in front of the camera’s second rotation you
will immediately see the effect it has on the view. In addition, the mug has
been ‘centred’ by moving the world 0.5 units down the y axis of the camera.

Introduce a Scale statement to widen the handle as shown. The mug does not
look tall enough – increase its height to 1.9 units.

RIB

Example 3 - anyone for coffee?

Shaping Up 5•8

Cylinder 1 0 1.5 360 Disk 0 1 360

y y

y

y
y

y

x x

x
x

x

x

Translate 0 0 1.5
Cylinder 0.9 -1.4 0 360

Disk -1.4 0.9 360

Torus 0.95 0.05 0 180 360 Translate 0 1 -0.75
Rotate 90 0 1 0
Torus 0.6 0.1 0 360 360

The actions of the RIB statements used in the construction of the coffee mug,
example 3, are illustrated below. Unless otherwise indicated, the z axis is
pointing up. The surface being created is shown in the heavier line weight and
the parameter(s) responsible for positioning the suface in the z direction are
shown in bold.

In the last diagram the handle has been widened by applying a scaling factor
to the x coordinate. It is left as an exercise for you to determine where in the
script the “Scale 2 1 1” command should be inserted.

z

y

x

z

Shaping Up 5•9

3

5

7

1

4

2

6

Scale 2 1 1

Question: why is the scaling being applied
to the x axis when in this diagram it appears
as if the z axis requires “stretching”?

Shaping Up 5•10

#saucer.RIB
#some tricky scaling
Display "saucer" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 0 7
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 45 "from" [2 -3 4]
 LightSource "ambientlight" 2 "intensity" 0.15

 Surface "plastic"
 Color 0.5 0.5 1 #pale blue

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
WorldEnd

The purpose of this example is to show the effect of using scaling and trans-
lation, as well as the importance of applying these transformations in the
correct order. Ignoring the transformations for a moment, the combination of
the two spheres and the torus simply produces a hemi-spherical “cup”, 0.1
units in thickness, with a rounded rim.

The effect of the Scale statement is to stretch the “cup” into a saucer-like
object, refer to the illustration on the next page. The translation is optional in
that it does not change the form of the saucer, only its position. However, it
makes sense to lift the saucer by an amount equal to its radius so that it ‘sits’
on the x–y plane, hence the translation of 0.5 units in the z direction.

The widened rim of the saucer is due to the thickness of the basic “cup” being
exaggerated by the scaling factor–like stretching a sheet of rubber. By adjust-
ing the diameter of the inner sphere, and making the necessary changes to the
parameters of the torus, a wide variety of rims can be created.

The basic “cup” can also be stretched vertically into an object reminiscent of
an egg cup–see the next page. To create this object, x and y have been scaled
by 1, therefore they remain unchanged, while the height in the z direction has
been increased by 200%. To compensate for the scaling, the translation has
been increased from 0.5 to 1 unit ie. 2 x 0.5 = 1.

As an exercise, create an egg by scaling a sphere, assign it an appropriate
colour and position it in the egg cup.

RIB

Example 4 - the universal saucer

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

no translation

Shaping Up 5•11

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

The effects of scaling and translation

no scaling or translation

both scaling and translation applied

 Translate 0 0 1
 Scale 1 1 2

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

y

y

x

x

y

x

y

x

now its an egg cup!

For reference the original x–y plane BEFORE the transformations were applied
are shown in each example.

Shaping Up 5•12

#eggcup with base.RIB
#copying and pasting with instancing
Display "eggcup" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -.5 5
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 25 "from" [2 -3 4]
 LightSource "ambientlight" 2 "intensity" 0.25

 #Egg cup top
 Color .55 .17 .11 #dark brown
 Surface "wood"
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg cup base
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

RIB

Example 5 virtually “green”–reusable geometry

The previous example illustrated an important point about 3D models; by
making a few minor changes, to scaling for example, their geometry can form
the basis of a variety of secondary models. A similiar principle can be applied
within a single scene description. This example shows how several surfaces
can be collected together into a single retained object, and conveniently reused,
or instanced, many times. In the context of a drawing program this is like mak-
ing a group, then copying and pasting it repeatedly within an illustration.

The intention to make an object from a collection of surfaces is indicated to the
renderer by ObjectBegin/ObjectEnd. The number following ObjectBegin
indentifies, or tags the collection for later use by a statement that places the
object in the world, the number itself has no other significance,

 ObjectInstance tag

Unfortunately, transformations cannot be used between ObjectBegin and
ObjectEnd. Instancing allows the renderer to work more efficiently and also
helps to avoid writing tediously long RIB files. Pay particular attention to the
next two pages as they explain the transformations used in this scene.

The following line drawings show the effect of applying the transformations
used in example 5. At each stage, the coordinate system is represented by a
one unit grid, subdivided into quarters. To fully understand the action of
each group of transformations, remember they are applied,
 • in reverse sequence, and
 • with reference to the current coordinate system–shown as heavier lines.

The ‘new’ coordinate system only becomes current when an object is created.

untransformed Scale 1 1 2 Translate 0 0 1 ObjectInstance 1

Shaping Up 5•13

Rotate 180 1 0 0 Scale 1 1 0.25 Translate 0 0 -0.5 ObjectInstance 1

Translate 0 0 1
Scale 1 1 2
ObjectInstance 1

RIB (fragment)

Translate 0 0 -0.5
Scale 1 1 0.25
Rotate 180 1 0 0
ObjectInstance 1

RIB (fragment)

Visualising example 5

In the last example, the base of the egg cup was positioned and placed in the
scene by a scaling followed by a translation.

The same effect can also be achieved by placing the translation before the
scaling. However, simply reversing the two statements will not work. As the
drawing below shows, the translation must be altered. In general it is better to
perform a scaling BEFORE a translation, as shown on the previous page.

Shaping Up 5•14

Rotate 180 1 0 0 Scale 1 1 0.25 Translate 0 0 -2 ObjectInstance 1

-1

-2

Visualising example 5 – continued

RIB (fragment)

 #Egg cup base
 Scale 1 1 0.25
 Translate 0 0 -2
 Rotate 180 1 0 0
 ObjectInstance 1

Shaping Up 5•15

#egg and cup.RIB
#playing with materials

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 #Table cloth
 Color 0.87 0.71 0.51
 Surface "carpet" "Kd" 1 "nap" 0.5 "scuff" 0.5
 Disk 0 20 360

 #Top
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

Example 6 – playing with materials

RIB

With the exception of a sphere that has been added to model an egg, this
example is essentially the same as the previous scene. Where it is different,
however, is not so much in the area of “shape” as “shading”. Although the
first example in this section experimented with various materials, this
example exploits the way most shaders assigned with the Surface statement
can have their properties ‘tuned’ by a number of parameters. Each parameter
has a default value that can be either accepted, which is exactly what

happened in example 1, or reset as shown. Three surface shaders are used in
this example to give the effect of a “carpet”, “wood” and “spatter”. Their full
specifications, as documented by PIXAR, appear on the next three pages.
Although the details of surface shading will be dealt with in another section,
the descriptions of each of the materials used here should give you enough
information to undertake your own experiments. Most of the parameters use
values that range from 0 to 1; the exceptions, at least for the materials used in
this example, are

 wood "grain"
 carpet "nap"
 spatter "sizes"

Experiment with some or all the parameters in order to appreciate the control
that each provides over the appearance of a surface. In the absence of pre-
computed images this is a “trial and error” process. Three techniques can be
used to speed up rendering

 • use a higher ShadingRate, say 20, and optionally use
 • ShadingInterpolation “smooth”, to reduce the blotchiness of the image,
 • comment-out any surfaces that are not currently being adjusted.

ShadingRate is like a quality control adjuster; low values of around 1 or 2
give excellent results while higher values like 20 or more provide “rough and
ready” snapshots. A high shading rate simply tells the renderer not to cal-
culate the colour value for every pixel but to sample the pixels at whatever
rate has been set. The closest comparison to ‘real world’ photography is
choosing a high speed film with a coarse grain emulsion. Unfortunately, high
shading rates generate very pixelated images, see opposite. To reduce these
artefacts,

 ShadingInterpolation "smooth"

can be used to tell the renderer to average-out, or interpolate, the pixels
between the samples, otherwise it simply uses a constant colour. The state-
ment can be inserted immediately after ShadingRate. Of course you may
wish to take advantage of these image “defects” to achieve a particular
illustrative effect, in which case resetting ShadingInterpolation is optional. By
default its set to "constant", hence the blocks of flat colour.

Bearing in mind a PAL resolution video image constists of 442,368 pixels, the
careful use of these statements can have a very significant effect on the speed
of rendering.

Shaping Up 5•16

Shaping Up 5•17

"wood" "Ka" "Ks" "Kd" "roughness" "specularcolor" "grain" "swirl"
"swirlfreq" "c0" "c1" "darkcolor"

"Ka" 1 "Ks" 0.4 "Kd" 0.6 "roughness" 0.2
"grain" 5 "swirl" 0.25 "swirlfreq" 1
"specularcolor" [1 1 1]
"darkcolor" [dependent on the surface colour]
"c0" [0 0 0] "c1" [0 0 1]

This shader creates a realistic-looking wood. The frequency of the wood grain
can be changed with the grain parameter. The relative amount or amplitude of
the turbuent swirl in the grain is controlled by the swirl paramater, and swir-
freq controls the frequency of this turbulence. Low values of swirl produce
more uniform looking wood, while low values of swirlfreq make the wood
appear to be more knotty. Obviously these two parameters interact to a large
extent. You should be careful not to set swirl too high or swirlfreq too low or
the wood will become a jumbled mess.

The wood is simulated by creating a grain that is essentially composed of
differently coloured concentric “cylinders” around a central axis defined by the
two points c0 and c1. This axis is the z axis by default. Note that the orientat-
ion of this axis can be varied either by changing these two parameters or by
doing some transformations between the call to the shader and the definition
of the geometry. Either one of these approaches may make more intuitive sense
in different applications.

The colour of the wood will normally consist of bands of different intensities of
the surface colour. This is the most generally useful way of invoking the
shader. However, for special appearances this can be changed by changing the
darkcolor parameter, which controls the colour of the dark grain of the wood.
The different intensity levels are actually levels of mixing between this colour
and the surface colour, so setting the surface colour to red and darkcolor to
white will produce red wood with white grain and various shades in between.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

Name

Defaults

Description

Bugs

Surface Shaders

Shaping Up 5•18

"carpet" "Ka" "Kd" "scuff" "nap"

"Ka" 0.1 "Kd" 0.6 "scuff" 1 "nap" 5 "swirl" 1

This shader produces a carpeted surface, complete with scuff-marks. The scuff
parameter controls the “amount of scuff”, or the relative frequency of intensity
variations. Higher values produce more frequent scuffing. nap describes the
“shagginess” of the carpet. Higher values make a more coarse-looking carpet.

The carpet shader makes a reasonable stab at anti-aliasing, so the actual grain
of the carpet fades away with distance.

There are no specular reflections from real carpet (at least on a macroscopic
scale), so the only lighting parameters are Ka and Kd, which have the usual
meanings of ambient and diffuse reflective intensities, respectively.

The way anti-aliasing is performed can cause linear artifacts in some cases.

Name

Defaults

Description

Bugs

Surface Shaders continued

"spatter" "Ka" "Ks" "Kd" "roughness" "specularcolor" "basecolor"
"spattercolor" "specksize" "sizes"

"Ka" 1 "Ks" 0.7 "Kd" 0.5 "roughness" 0.2
"specularcolor" [1 1 1] "basecolor" [0.1 0.1 0.5] "spattercolor" [1 1 1]
"specksize" 0.01 "sizes" 5

This shader makes objects look like blue camp cookware with white paint
spatters. Actually, both the blue basecolor and the white spattercolor can be
changed if you desire.

The parameter specksize controls the size of the paint specks as you would
expect. However, there are a range of sizes of paint specks controlled by the
parameter sizes. Lower (integer) values produce smaller and more uniform
specks. Higher values produce some larger blotches and specks of many
different sizes.

The parameters Ka, Ks and Kd, have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

Name

Defaults

Description

Bugs

Surface Shaders continued

Shaping Up 5•19

Shaping Up 5•20

RIB

Example 7a - making a composition the wrong way!

In this example the description of the saucer in example 4, shown in bold, has
been copied and pasted into the part of the previous RIB file that described
the so-called table cloth. However, as the illustration on the next page shows,
something very strange has happened to the egg cup and egg.

#egg and cup.RIB
#playing with materials

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 Surface "plastic"
 Color 0.5 0.5 1 #pale blue
 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

 #Top
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

Shaping Up 5•21

Because the saucer is created with a scaled coordinate system all the surfaces
defined after this transformation are likewise effected, hence the Ostrich egg
effect shown on the left, rather than the desired composition shown on the
right!

Clearly objects in a scene need to have their individual coordinate systems, or
object space, and their surface attributes kept, in a sense, private from each
other. In a RIB file there are two ways in which this can be achieved. In the
following example the two principle objects, the saucer and the egg cup
holding an egg, are blocked together between the statements AttributeBegin/
AttributeEnd; these instruct RenderMan to localise (keep private) the
geometry AND the surface attributes of each object. If only the geometry
needs to be kept private, and there are good reasons why this is sometimes
necessary, then the TransformBegin/TransformEnd statements are used
instead.

To draw an analogy, if WorldBegin/WorldEnd define the beginning and end
of an entire theatrical play, then the AttributeBegin/AttributeEnd behave like
markers that separate one “scene” from another. Surfaces and polygons fulfill
the role of “actors” with each, either separately or in collections, being
assigned “costumes” represented by the attributes of Color and Surface.

In the improved RIB script on the following page, ObjectInstance has been
used to insert the saucer instead of declaring three separate surfaces. None-
theless, the composition still displays a modelling error–notice how the egg
cup partially penetrates the saucer. However, because they are grouped
together with the AttributeBegin/AttributeEnd statements, the egg cup and
egg can be raised by a single transformation (shown in bold print on the next
page). Because of the curvature of the saucer a similiar error accurs if the egg
cup is moved toward the rim. But even so, it is sometimes acceptable to allow
objects to interpenetrate as long as the error is not too noticable.

The two methods of grouping objects together using AttributeBegin/End and
TransformBegin/End are summarised on page 24.

Shaping Up 5•22

#egg cup and saucer.RIB
#combining objects the correct way!

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 AttributeBegin #Saucer
 Surface "plastic"
 Color .5 .5 1
 Translate 0 0 0.5
 Scale 4.4 4.4 1
 ObjectInstance 1
 AttributeEnd

 Translate 0 0 0.1 #raise the egg cup and egg

 AttributeBegin #Egg cup and egg
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
 AttributeEnd
WorldEnd

RIB

Example 7b - making a composition the correct way

Shaping Up 5•23

WorldBegin
 #lighting setup the same as before…

 Color 0.87 0.71 0.51
 Surface "carpet" "Kd" 0.8 "nap" 0.8 "scuff" 0.8
 TransformBegin #mug
 Cylinder 1 0 1.5 360
 Disk 0 1 360
 Translate 0 0 1.5
 Cylinder 0.9 -1.4 0 360
 Disk -1.4 0.9 360
 Torus 0.95 0.05 0 180 360

 #mug handle
 Scale 2 1 1
 Translate 0 1 -0.75
 Rotate 90 0 1 0
 Torus 0.6 0.1 0 360 180
 TransformEnd

 Translate 0 0 -0.15 #lower the saucer

 Color .65 .27 .21
 Surface "wood" "darkcolor" [0 0 0] "swirl" .25 "grain" 15 "swirlfreq" 1.5
 TransformBegin #Saucer
 Translate 0 0 0.5
 Scale 4.4 4.4 1
 ObjectInstance 1
 TransformEnd
WorldEnd

Example 7c - another way of grouping objects

RIB fragment

This example is a combination of “coffee mug.RIB” and “saucer.RIB”. It shows
how the surfaces and transformations that form an object can be grouped
together using TransformBegin/TransformEnd. Like the groups formed by
AttributeBegin/AttributeEnd in the previous example, these new statements
keep the transformations for each object private, but they do so without
localizing colour and surface attributes. The image on the left shows what
happens if the transformations previously applied to the handle are not kept
“private”. The image on the right is the result of the RIB given above.

Independent objects each with
their own shape, position AND
shading attributes.

Shaping Up 5•24

Summary of methods relating to the grouping of objects

WorldBegin
 AttributeBegin
 (shape, transformation and shading information
 relating to the egg and egg cup)

 AttributeEnd

 AttributeBegin
 (shape, transformation and shading information
 relating to the saucer)

 AttributeEnd
WorldEnd

WorldBegin
 Color 1 1 0 #Yellow
 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd
WorldEnd

Independent objects each with
their own shape and position, BUT
all sharing a common shading
attribute which in this example
has been set to the colour yellow.

AttributeBegin
AttributeEnd

TransformBegin
TransformEnd

In this section the characteristics of a virtual camera will be further refined to
include,

 • depth of field, and
 • motion blur.

In the previous chapters, RIB scripts have typically defined a camera with the
following statements,

 Display "mypicture" "framebuffer" "rgba"
 Projection "perspective" "fov" 40
 Format 800 800 1

Such a camera, however, only approximates the behaviour of a real camera. In
particular it acts like a pin-hole camera in that it sharply focuses all parts of an
image. Real cameras are strictly limited in their ability to simultaneously focus
the images of objects placed at different distances in front of the lens – this is a
physical limitation that depends solely on the ratio of the diameter of the
aperture of the camera’s lens to its focal length. In photography this ratio is
called the “f-stop” or “f-number” of a lens. This optical limitation is
aesthetically exploited by photographers when the foreground and/or the
background of a composition is deliberately defocused.

Real camera’s are likewise unable to sharply focus on objects in a scene if either
the camera is moving, particularly if it is hand-held, or if the scene, or parts of
it, are in motion. To accomodate what, in computer graphics, is called “motion
blur” the specification of a synthetic camera must include the idea of an image
being formed over a finite period of time ie. as if using a shutter. The ‘basic’
virtual camera used so far has assumed all motion is frozen by capturing an
instantaneous representation of a synthetic scene.

If photo-realism is to be achieved in the digital domain then similiar facilities
should be available to 3D computer graphics. By providing mechanisms to
introduce, what are in effect, digital versions of “depth of field” and “motion
blur”, RenderMan greatly improves a designers ability to deliver photo-realistic
imagery. Interestingly, some real world photographic nuances are not available
in RenderMan, these include effects caused by,

 • lens flare,
 • optical defects such as astigmatism and chromatic aberration, and
 • the mundane effects of dirty or scratched optics!

Because there is a slight difference in the way “field of vision” (fov) is defined
in photography compared to RenderMan, this section also provides some
examples of converting from one system to the other.

Overview

An Improved Camera 6•1

In this section the characteristics of a virtual camera will be further refined to
include,

 • depth of field, and
 • motion blur.

In the previous chapters, RIB scripts have typically defined a camera with the
following statements,

 Display "mypicture" "framebuffer" "rgba"
 Projection "perspective" "fov" 40
 Format 800 800 1

Such a camera, however, only approximates the behaviour of a real camera. In
particular it acts like a pin-hole camera in that it sharply focuses all parts of an
image. Real cameras are strictly limited in their ability to simultaneously focus
the images of objects placed at different distances in front of the lens – this is a
physical limitation that depends solely on the ratio of the diameter of the
aperture of the camera’s lens to its focal length. In photography this ratio is
called the “f-stop” or “f-number” of a lens. This optical limitation is
aesthetically exploited by photographers when the foreground and/or the
background of a composition is deliberately defocused.

Real camera’s are likewise unable to sharply focus on objects in a scene if either
the camera is moving, particularly if it is hand-held, or if the scene, or parts of
it, are in motion. To accomodate what, in computer graphics, is called “motion
blur” the specification of a synthetic camera must include the idea of an image
being formed over a finite period of time ie. as if using a shutter. The ‘basic’
virtual camera used so far has assumed all motion is frozen by capturing an
instantaneous representation of a synthetic scene.

If photo-realism is to be achieved in the digital domain then similiar facilities
should be available to 3D computer graphics. By providing mechanisms to
introduce, what are in effect, digital versions of “depth of field” and “motion
blur”, RenderMan greatly improves a designers ability to deliver photo-realistic
imagery. Interestingly, some real world photographic nuances are not available
in RenderMan, these include effects caused by,

 • lens flare,
 • optical defects such as astigmatism and chromatic aberration, and
 • the mundane effects of dirty or scratched optics!

Because there is a slight difference in the way “field of vision” (fov) is defined
in photography compared to RenderMan, this section also provides some
examples of converting from one system to the other.

An Improved Camera

Overview

An Improved Camera 6•2

Depth of Field

The RIB statement shown below in bold italics have been inserted to demon-
strate the way in which a virtual camera can form an image of a scene as if it
had, like a “real”camera, a limited depth of field. The statement that sets the
depth of field requires three parameters,

 DepthOfField f-stop focal length focal distance

Since the field of view ("fov") has been previously specified in the RIB script
(Projection "perspective" "fov" 45) it is best to use the default value of 1.0 for
the focal length; RenderMan will then preserve the relationship between the
height of the viewing frame, or the width if that is narrower than the height,
and the field of view ie. the image scale remains constant.

Deliberately altering the focal length without making a corresponding change
to the fov is like a photographer trying to control the sharpness of an image by
changing both the lens AND the format of the camera on which it is mounted
– a very bizarre thing to do!

RIB script

Display "fuzzy" "framebuffer" "rgba"
Projection "perspective" "fov" 45
Format 400 300 1
DepthOfField 2.0 1.0 5.0

Translate 0 0 5
Rotate -110 1 0 0
Rotate 70 0 0 1

WorldBegin
 Color 0 1 0 #green cone
 Cone 1.5 0.75 360

 Color 1 0 0 #red cone
 Translate -2.0 0.0 0.0
 Cone 1.5 1.0 360

 Color 0 0 1 #blue cone
 Translate 4.0 0.0 0.0
 Cone 1.5 0.25 360
WorldEnd

Depth of field set to

f-stop f2.0
focal length 1.0 units
focal distance 5.0 units

The visual effect of setting other combinations of f-stop and focal distance are
shown on the next page.

An Improved Camera 6•3

Depth of Field – continued

DepthOfField 2.0 1.0 3.0

DepthOfField 2.0 1.0 7.0

DepthOfField 1.4 1.0 3.0

DepthOfField 1.4 1.0 2.0

ie. focus on the near cone using a
moderately wide aperature lens.

ie. focus on the near cone using a very
wide aperature lens.

ie. focus 1 unit infront of the near cone
using a very wide aperature lens.

ie. focus on the far cone using a moderately
wide aperature lens.

An Improved Camera 6•4

Motion blur

The role of a virtual camera in photo-realistic rendering is to replicate the most
important attributes of a real camera. For example an image recorded onto
normal film stock or an electronic imaging device such as a CCD, is formed
over a brief period of time as the result of a shutter opening and closing. Any
motion occuring during this period of exposure results in the image, or parts of
it, being blurred.

Since the location of every object in a virtual world, including the camera, is
specified by one or more transformations, RenderMan simulates the effect of
motion blur by allowing any transformation, or indeed any “physical”
dimension to have several values. The first value is applied when the virtual
“shutter” opens and the last one is applied when it closes. The opening and
closing times of the shutter are set using the following statement,

 Shutter openTime closeTime

Normally, openTime will be set to 0 and closeTime will be 1.

Because our RIB files are hand-written, motion blur will be controlled using
just two values for any particular dimension or transformation that needs to
exhibit motion. Note that attributes such as colour and shading cannot be
changed during the opening and closing of the shutter. In the case of a
transformation such as a rotation, motion blur would be specified as follows,

 MotionBegin [0 1]
 Rotation 70 0 0 1 #Transformation at openTime
 Rotation 85 0 0 1 #Transformation at closeTime
 MotionEnd

In the case of the dimension of an object being varied, such as the height of a
cone, the MotionBegin/MotionEnd block might look like this,

 MotionBegin [0 1]
 Cone 1.5 0.25 360 #Cone pointing up at openTime
 Cone -1.5 0.25 360 #Cone pointing down at closeTime
 MotionEnd

In the example shown on the next page, motion statements have been used to
introduce blur by moving the world 0.05 units from right to left parallel to the
x-axis of the camera as the shutter opens and closes from time 0.0 to time 1.0.
The units of time, like those of the x, y and z axes, do not refer to any particular
system of measurement – they could represent seconds, hours or days.

-y
+7

-4

-x

+x

+y

RIB script

Display "camera motion" "framebuffer" "rgba"
Projection "perspective" "fov" 45
Format 400 300 1
Shutter 0 1

MotionBegin [0 1]
 Translate 0 0 5
 Translate -0.05 0 5
MotionEnd
Rotate -110 1 0 0
Rotate 70 0 0 1

WorldBegin
 Color 0 1 0 #green cone
 Cone 1.5 0.75 360

 Color 1 0 0 #red cone
 Translate -4.0 0.0 0.0
 Cone 1.5 1.0 360

 Color 0 0 1 #blue cone
 Translate 7.0 1.0 0.0
 Cone 1.5 0.25 360
WorldEnd

-0.05

An Improved Camera 6•5

Motion blur – continued

Translate 0 0 5
Rotate -110 1 0 0
MotionBegin [0 1]
 Rotate 70 0 0 1
 Rotate 73 0 0 1
MotionEnd

notice the linear blurring
although a rotation was
specified?

Translate 0 0 10
MotionBegin [0 1]
 Rotate 0 0 0 1
 Rotate 90 0 0 1
MotionEnd
Rotate -90 1 0 0

In the second example, motion blur has been achieved by rotating the camera
3° around the z-axis. Since the green cone is situated at the origin, and is itself
symmetrical, it remains sharply focused. Question: why in the third example
has a linear blur been the result of rotating the camera 90° around the z–axis?

In photography, the field of view (fov) of a lens, somewhat like the cone of
vision of an eye, indicates the extent to which objects that are situated away
from the direct line of sight (ie. the optical axis) can be focused on the film
plane. However, photographers generally relate to the creative possibilites of a
particular lens not in terms of its angular field of view – measured in degree’s
– but rather in terms of more general labels such as “wide-angle”, “telephoto”
etc. that are themselves based on the focal length of the lens.

In real world photography it is convenient to change the field of view either
by selecting a lens with a different focal length, or as in the case of a zoom
lens, by directly altering its focal length. When setting up a virtual camera
with RenderMan it is more convenient to accept the default focal length (1.0
unit) and directly adjust the fov parameter using the Projection statement, for
example,

 Projection "perspective" "fov" 40

Unfortunately fov is measured slightly differently by RenderMan compared to
normal photography. In photography fov is measured across the diagonal of
the film plane, while in RenderMan it is measured across the narrower of the
two sides of the image. It is particularly important to take this difference into
account when trying to match the view of a virtual camera to that of a real
camera, for example, when compositing images from photography and
computer graphics.

field of view field of view

“fov” in photography “fov” in RenderMan

An Improved Camera 6•6

Field of View

An Improved Camera 6•7

Matching a VR Camera to a Real Camera

This section provides a general over-view of the technique of compositing
images generated by 3D computer graphics and photography.

When photographing the scene that will be used as a “background” the
following information must be recorded:

 location of the camera – its x, y and z coordinates from a known datum,
 location of the ‘look-at’ point – its coordinates relative to the same datum,
 focal length of the lens,
 f-stop of the lens,
 focal distance – not always the same as the ‘look-at’ point,
 general position, orientation and intensity of the light sources, and the
 position and dimensions of any surfaces on, or against which any virtual 3D
 objects will be placed.

In the example shown below, the origin of the room ie. the datum, was defined
as a point on the floor directly beneath the far corner of the computer bench.
Since the camera was positioned to ‘look-at’ the same point, the corner of the
bench is in the centre of the frame of the photograph.

origin of the room

‘look-at’ point
(also the focal point)

The following measurements were make relative to the origin:

 camera position 940mm, 4510mm and 1520mm above the floor,
 ‘look-at’ point 730mm directly above the origin,
 lens focal length, 35mm wide angle,
 lens f-stop, f4,
 focal distance; the lens was accurately focused on the corner of the bench,
 the scene was principly lit by a flash gun 150mm to the left, and 150mm
 above the lens,
 the computer bench is 2440mm wide.

y–axis

x–axis

#room.rib
Projection "perspective" "fov" 35
Display "untitled" "framebuffer" "rgba"
Format 1183 787 1

ObjectBegin 1
 Cylinder 4 0 100 360
ObjectEnd

LightSource "distantlight" 2 "intensity" 3
"from" [-150 150 0] "to" [-150 150 100]

#Camera from [940.0 4510.0 1520.0]
#Camera to [0.0 0.0 730.0]
Rotate -99.7 1 0 0
Rotate 191.8 0 0 1
Translate -940.0 -4510.0 -1520.0

WorldBegin
 LightSource "ambientlight" 1 "intensity" 0.1
 Surface "plastic"
 Color 1 0 0
 ObjectInstance 1 #cylinder at the origin

 Color 0 1 0
 Translate 0 0 730
 ObjectInstance 1 #cylinder at the lookat point

 Color 0 0 1
 Translate 0 2440 0
 ObjectInstance 1 #cylinder at the front edge of the bench
WorldEnd

An Improved Camera 6•8

Matching Camera’s – continued

On the basis of those measurements the following RIB script was written in
order to test the accuracy with which objects, such as cylinders for example,
could be placed in a virtual space equivalent to the original room. The locations
chosen were,

 the origin,
 the ‘look-at’ point and
 the leading corner of the computer bench.

It was assumed the x–axis of the world space extended from left to right across
the room.

In particular note the field of view has been set to 35˚ rather than the ‘proper’
value of 37.8˚ as shown on the chart on the next page. Because the actual focal
length of a camera lens often deviates from its notional focal length it is always
necessary to experiment with this factor until the ‘test objects’ apparently lie in
the correct places when the rendered image is overlaid onto the photograph.

RIB

Comparisons of “fov” used in 35mm photography and RenderMan
(Format must set the viewing frame to a ratio of 3:2)

focal length
17
24
28
35
50
70
135
200

photographic fov
104
84
75
64
47
34
18
12

RenderMan fov
70.4
53.1
46.4
37.8
26.9
19.5
10.1
6.9

An Improved Camera 6•9

Matching Camera’s – continued

The RenderMan interface provides a mechanism by which a sequence of
image files can be produced by rendering several scene descriptions
contained in a single RIB file. Each scene description corresponds to an
individual rendered image, and in turn, each of these forms one frame of an
animation. A small part of a very simple animation RIB file is shown below.

Animation

Overview

Animation 7•1

RIB script

Projection "perspective" "fov" 45
Format 400 300 1

Translate 0 0 5
Rotate -110 1 0 0
Rotate 70 0 0 1

FrameBegin 1
 Display "grow.001" "file" "rgba"
 WorldBegin
 Color 0 1 0 #green cone
 Cone 0.25 0.75 360
 WorldEnd
FrameEnd

FrameBegin 2
 Display "grow.002" "file" "rgba"
 WorldBegin
 Color 0 1 0 #green cone
 Cone 0.30 0.75 360
 WorldEnd
FrameEnd
:
:
: (additional FrameBegin / FrameEnd blocks)
:
:
FrameBegin 16
 Display "grow.016" "file" "rgba"
 WorldBegin
 Color 0 1 0 #green cone
 Cone 1.25 0.75 360
 WorldEnd
FrameEnd

z

y

x

height

radius

theta max

Cone height radius thetamax

Notice how each scene description is “bracketed” by the paired statements,
FrameBegin/FrameEnd. In this example a cone is increasing in height from
0.25 to 1.25 units. Quite clearly in the context of writing RIB files with a word
processor an enormous amount of tedious work ie. copying, pasting and
editing, would be required to produce anything but very brief and simple
animations. To enable you to experiment relatively conveniently with
animation techniques you will be using a utility program called “FrameUP”.

Using FrameUP

Animation 7•2

A common technique used in animation is to define a series of key-frames that
specify the characteristics of a scene that undergoes change over a period of
time. In this way an animator does not have to attend to the specific details of
an animation on a frame by frame level. Unfortunately, RenderMan only deals
with animations at this low level – it does not have the concept of key-framing
built into its scripting language. Normally an animator would use an
interactive system that would, for example, allow key-frames to be defined
and then subsequently converted into long RIB files that would be processed
by a renderer in the normal way. Generally animators do not read these RIB
files, much less know what to do with them even if they did!

The utility software, FrameUP, has been designed to allow you to produce
animations with RenderMan but at the same time to avoid the chore of
producing each and every frame desciption by hand. By processing your
animation file BEFORE it is passed to the renderer, FrameUP allows some
“extra functionality” to be added to a RIB file. For example, the previous
animation could have been written as follows,

ANIMATION script

Projection "perspective" "fov" 45
Format 400 300 1
Display "grow" "file" "rgba"
Translate 0 0 5
Rotate -110 1 0 0
Rotate 70 0 0 1

Tween "from" 1 "to" 2 "frames" 16

KeyFrameBegin 1
 WorldBegin
 Color 0 1 0 #green cone
 Cone 0.25 0.75 360
 WorldEnd
KeyFrameEnd

KeyFrameBegin 2
 WorldBegin
 Color 0 1 0 #green cone
 Cone 1.25 0.75 360
 WorldEnd
KeyFrameEnd

The lines in bold printing highlight three of the most important additional
statements supported by FrameUP.

Upon reading the Tween statement, FrameUP produces a sequence of
inbetween frames, hence its name, that represent the changes that occur in
going "from" keyframe 1 "to" keyframe 2 over the duration of 16 "frames".

Animation 7•3

FrameUP – continued

Any number of key frames can be used so long as each has a unique number
or tag ie.

	 KeyFrameBegin 3
 WorldBegin
 Color 0 0 1 #changed to blue
 Cone 1.25 0.75 360 #height the same as keyframe 2
 WorldEnd
 KeyFrameEnd

Pairs of key frames that will be tweened must have an identical structure –
only numeric parameters are allowed to change. For example, it would be
illegal to substitute the cone in key frame 2 for a sphere. If FrameUP finds
any mistakes of this kind it will warn you and refuse to process the animation
file. However, like RenderMan it ignores comments.

In addition, any number of Tween statements can be inserted. For example,
the animation script on the previous page could have included the key frame
shown above so that the cone increases in height, then changes from green to
blue before returning slowly to its original height and colour, ie.

 Tween "from" 1 "to" 2 "frames" 16
 Tween "from" 2 "to" 3 "frames" 16
 Tween "from" 3 "to" 1 "frames" 30

In each segment of the animation the changes, be they height or colouration,
would change linearly ie. at a constant rate. FrameUP also allows changes to
occur more gracefully ie.

 Tween "from" 1 "to" 2 "frames" 16 "smooth"

In this case the rate of ‘growth’ of the cone would be slow at first, becoming
more rapid around the 8th frame and then finally it would gradually slow
down to the final frame (16). Infact, by tween’ing from key frame 1 to 2 and
then back to key frame 1 using "smooth" on both sequences the cone would
have a decidedly "bouncy" feel to its motion.

The way in which the tweening occurs can be further controlled by the use of
a technique called "easing-in" and "easing-out" – these are sometimes referred
to as "fairing-in" and "fairing-out". For example, the cone could be made to
abruptly spring to its full height in the first sequence using the following
statement,

 Tween "from" 1 "to" 2 "frames" 16 "easeout" 1.0

On the other hand the second sequence could convey the feeling that the
apex of the cone is falling as if it were under the influence of gravity ie. slow
at first but becoming faster and faster,

 Tween "from" 2 "to" 1 "frames" 16 "easein" 1.0

In each case the number following "easein" and "easeout" may be set to any
value between 0 and 1. A value of "easeout" 0.3, for example, would indicate
that only the final 30% of the inbetweened frames would be eased-out ie. the
rate of change would decrease to zero.

Finally, it should be noted that easing-in and easing-out may, to a certain
extent, be combined ie.

 Tween "from" 2 "to" 1 "frames" 100 "easein" 0.2 "easeout" 0.4

In this animation, 100 frames in length, only the first 20% and the last 40% of
the sequence are effected by easing-in and easing-out. FrameUP (as of
version 0.90) will not allow easing-in and easing-out to overlap. In other
words if you attempt to set "easein" to 0.6 AND "easeout" to 0.7, FrameUP
will reduce the "easeout" period to 0.4, since 60% and 40% add up to 100%.
However, this restriction may change in later versions of the software.

FrameUP is able to animate texture and displacement maps in the sense that
key frames can specify two different image files for corresponding pairs of
MakeTexture statements, for example,

Tween "from" 1 "to" 2 "frames" 25

KeyFrameBegin 1
 MakeTexture "myImage.001" "myTex.tx" "periodic" "periodic" "gaussian" 2 2
 WorldBegin
 Surface "texmap" "texname" ["myTex.tx"] "maptype" 2
 Sphere 1 -1 1 360
 WorldEnd
KeyFrameEnd

KeyFrameBegin 2
 MakeTexture "myImage.025" "myTex.tx" "periodic" "periodic" "gaussian" 2 2
 WorldBegin
 Surface "texmap" "texname" ["myTex.tx"] "maptype" 2
 Sphere 1 -1 1 360
 WorldEnd
KeyFrameEnd

The important point to notice here is that each of the multiple images files
MUST have a 3 digit extension and that the number of frames specified in the
Tween statement, 25 in the example shown above, matches the number of
images files to be converted to texture files with the MakeTexture statement.
Of course ALL of the image files (eg. myImage.001 to myImage.025) must be
in the same folder as the RIB file – FrameUP cannot create missing files by
morphing images.

Because texture files are generally very large each frame of the animation
uses the same name for the texture produced by MakeTexture ie. "myTex.tx",
naturally any name can be used for the texture file. In this way, each frame
merely over-writes the previously used texture file and thus saves disk space.

FrameUP – animated texture and displacement maps

Animation 7•4

Most modelling and animation systems provide at least four types of light
sources. In the RenderMan system the basic lights are referred to as
“ambientlight”, “distantlight”, “pointlight” and “spotlight” – note these are
spelt as single words. Although these light sources illuminate a scene in
different ways they all share the common ability of being able to set their
colour and intensity.

Colour is defined in the usual way ie. by the red, green and blue components,
whilst intensity is set by a single value normally between 0 and 1. The
following, for example, would form part of the specification of a light source,

 "lightcolor" [1 1 1]
 "intensity" 0.2

In their standard configuration, none of the basic light sources are able to cast
shadows but, with the exception of an ambient light, they each have an
extended version that includes this capability. However, shadow casting is an
advanced topic and will be dealt with separately.

A scene may be lit by any number of light sources. Objects may share a
common light source(s) or be assigned their own individual light source(s) - it
just depends where in a RIB file a light source statement(s) appears. The ability
to differentially illuminate the objects in a scene is unique to computer
graphics – a directly equivalent situation does not exist in “real world” photo-
graphy.

The renderer creates a light source based upon information passed to it with
the RIB command

 LightSource

which is followed by the name of a particular type of light, for example,

 LightSource "ambientlight" 1

and a number that identifies, or tags, the light source. A tag may be any
number that is unique to a particular light source.

Lights are adjusted by overriding their default settings. Since in the case of the
ambient light created above, specific values for its colour and intensity have
not be given it would automatically have the default colour of white and an
intensity of 1.0 ie maximum brightness.

Whilst lights can only be created and not destroyed it is possible to switch
them OFF and ON via their tag, for example,

 Illuminate 1 "false"

turns the previously created ambient light OFF. When a light is created it is
automatically switched ON.

Basic Lighting

Overview

Defining a Light Source

Basic Lighting 8•1

An ambient light source uniformly adds colour of a certain intensity to each
surface in a scene. It is generally used to increase the level of background
illumination in order to soften the effects of other lights. For example, the
following RIB statement creates a pale yellow ambient light,

 LightSource "ambientlight" 1 "intensity" 0.3 "lightcolor" [1 1 0]

A distant light source acts in much the same way as the sun – it illuminates a
scene uniformly in one direction. Objects vary in brightness according to the
inclination of their surfaces; their location within the scene has no effect. The
values of the “from” and “to” parameters merely specify the direction of the
light source and not its ‘true’ location.

 LightSource "distantlight" 1 "intensity" 1.0 "from" [2 0 4] "to" [0 0 0]

Like an unshielded electric light bulb a point source radiates light uniformly
in all directions. However, unlike the previous light sources, its intensity
diminishes over distance – to be precise, brightness varies with the square of
the distance. For example, a surface that is three times more distant from a
point light source than another surface, only receives one ninth of the light
that illuminates the nearer object. The dramatic drop in illumination over
distance means that very high values for the intensity parameter are often
necessary. Because a point light has a position in space but not a particular
direction it does not have a “to” parameter. For example,

 LightSource "pointlight" 2 "intensity" 30 "lightcolor" [1 1 1] "from" [0 0 9]

A spot light, on the other hand, has both position and direction – hence it has a
“from” and a “to” parameter.

 LightSource "spotlight" 1 "intensity" 12 "from" [2 0 4] "to" [0 0 0]

In addition, spot lights have an extensive range of parameters that control the
way they can illuminate a scene. Like a point light their intensity falls off over
distance; they have a cone of illumination which by default is set to 60 degrees
and they also have control over the light fall-off that occurs at the edge of the
cone as well as the distribution of light within the cone itself. As usual with
RenderMan, these parameters have default settings and often there is no need
to explicitly specify these values.

Distant Lighting

Point Lighting

Spot Lighting

Ambient Lighting

Types of Light Sources - descriptions

Basic Lighting 8•2

“coneangle”

“conedeltaangle”

“from”

“from”

ambient light

distant light

point light

spot light

4

2

“from”

“to”

“to”

Types of Light Sources - examples

LightSource "distantlight" 1 "intensity" 1.0 "from" [2 0 4] "to" [0 0 0]

LightSource "ambientlight" 1 "intensity" 0.3

LightSource "pointlight" 1 "intensity" 12.0 "from" [2 0 4]

LightSource "spotlight" 1 "intensity" 12.0 "from" [2 0 4] "to" [0 0 0]

Basic Lighting 8•3

RIB

##RenderMan RIB-Structure 1.0
Experiments with a single distant source
2nd Dec 1993

Display "distantlight" "framebuffer" "rgba"
Format 200 150 1
Projection "perspective" "fov" 40

ObjectBegin 1
 Polygon "P" [-3 3 0 -3 -3 0 3 -3 0 3 3 0] "Cs" [0 1 0 0 0 1 1 1 1 1 0 0]
ObjectEnd

ObjectBegin 2
 Sphere 1 -1 1 360
ObjectEnd

Translate 0 0 9
Rotate -120 1 0 0
Rotate 25 0 0 1

WorldBegin
 LightSource "distantlight" 1 "intensity" 1.0 "from" [2 0 4] "to" [0 0 0]
 Surface "matte"
 ObjectInstance 1
 Translate 0 0 1
 Color 0.8 0.8 0.8
 ObjectInstance 2
WorldEnd

An example script

y x

z

In the following RIB file the LightSource statement may be substituted by
the examples shown on the previous page. The corners of the polygon have
been given arbitary colours so that if you change the camera angle you will
be able to orientate yourself more easily – red marks the ‘positive’ corner.

Basic Lighting 8•4

The optional settings for each of the standard RenderMan light sources are
shown in italics and their corresponding default values, as well as their
settable range, is also given. Each is followed by an example of the way they
could be used in a RIB file.

LightSource "ambientlight"
 "intensity" default 1, range 0 to 1,
 	"lightcolor" default [1 1 1], range 0 to 1 for each component.

 	LightSource "ambientlight" 1 "intensity" 0.5 "lightcolor" [0.5 0.5 0.5]

LightSource "distantlight"
 "intensity" default 1, range 0 to 1,
 	"lightcolor" default [1 1 1], range 0 to 1 for each component,
 	"from" default [0 0 0] , unlimited range from positive to negative,
 	"to" default [0 0 1], unlimited range from positive to negative.

 	LightSource "distantlight" 5 "intensity" 0.5 "lightcolor" [0.5 0.5 0.5] "from" [2 0 4]
 	 "to" [0 0 0]

LightSource "pointlight"
 "intensity" default 1, range 0 to an unlimited upper value,
 	"lightcolor" default [1 1 1], range 0 to 1 for each component,
 	"from" default [0 0 0] , unlimited range from positive to negative.

 	LightSource "pointlight" 2 "intensity" 25 "lightcolor" [0.2 0.5 1.0] "from" [2 0 4]

LightSource "spotlight"
 "intensity" default 1, range 0 to an unlimited upper value,
 	"lightcolor" default [1 1 1], range 0 to 1 for each component,
 	"from" default [0 0 0] , unlimited range from positive to negative.
 	"to" default [0 0 1], unlimited range from positive to negative,
 	"coneangle" default ? (30), range from 0 to ?,
 	"conedeltaangle" default ? (5), range from 0 to ?
 	"beamdistribution" default 2, range from 2 to ?.

 	LightSource "spotlight" 4 "intensity" 12 "lightcolor" [0.2 0.5 1.0] "from" [2 0 4]
 	"coneangle" 0.349 "conedeltaangle" 0.017 "beamdistribution" 3

Note: cone angle and cone delta angle are measured in radians – one degree
equals 0.01745 radians.

Reference

Basic Lighting 8•5

Positioning Lights in Space

"from" [-3 -2 4]

camera X axis
camera Y axis

"to" [0 0 0]

cam
era Z axis

The world is orientated with respect to the camera by a sequence of rotations
and translations, for example,

 Translate 0 0 9
 Rotate -120 1 0 0
 Rotate 25 0 0 1

… whilst lights are positioned by their “from” and “to” parameters.

The spot light shown opposite is
positioned at x = -3, y = -2, z = 4 units, and
is aimed at the world origin only if it
appears within a RIB file immediately
before or after WorldBegin, for example,

 Display…
 Projection…
 Format…

 Camera transformations…

 LightSource "spotlight" … (here)
 WorldBegin
 LightSource "spotlight"… (or here)
 Objects…
 WorldEnd

Light sources created before the statement WorldBegin have their “from” and
“to” locations positioned within the camera coordinate system and NOT the
world coordinate system. Consequently, rotations and translations applied to
the camera are also applied to the lights – in effect, the lights are attached to
the camera in much the same way as a flash gun can be fixed to a real camera.

Since our RIB files are ‘hand made’, positioning lights in the way shown above
is very convenient. It is possible to perform rotations and translations on lights
– they behave just like other object. But for now this added complication will
be avoided.

Basic Lighting 8•6

Advanced Lighting – casting shadows
where the sun never shines!

Overview Shadows in ‘real life’ are normally considered to be an integral part of scene –� a
natural outcome of the interplay of light and objects. In 3D graphics, however, a
shadow is treated as if it were an additional element. Infact, shadow casting is
an extra facility that must be explicitly ‘turned on’.

When lit by one of the basic light sources, objects are shaded according to the
orientation and optical characteristics of their surfaces. But basic light sources
are unable to cast shadows of objects onto other objects. With the exception of
an ambientlight, each of the basic light sources has a counter-part that allows
shadow casting to occur. For example, instead of using a basic distant light in a
scene, such as

 LightSource "distant" 1 "from" [3 3 3] "to" [0 0 0]

its shadow casting equivalent could be used ie.

 LightSource "shadowdistant" 1 "from" [3 3 3] "to" [0 0 0] "shadowname" "shadow1.tx"

For a complete description of the shadowdistant and other shadow casting light
sources refer to Appendix C – Shader Reference, pages 12 to 14.

Shadow casting is not an automatic attribute of every light source because the
renderer is required to perform additional calculations in order to determine
the location and interaction of the shadows. This makes the rendering process
slow and, in some situations, it is not always necessary to have shadows.
Unlike the technique known as ray-tracing, in which the shadows are created
along with every other part of an image, RenderMan’s so-called scan-line
renderer calculates the contribution that each “shadow casting” light source
will make to the final image BEFORE it is rendered. This method of creating
shadows is more efficient than ray-tracing if, for example, over part of an
animation the lights and objects in a scene remain in a fixed relationship to each
other. During such periods of ‘static’ lighting the renderer need only perform
the lengthy shadow calculations on the first frame, there after it can apply the
pre-calculated shadow information to all subsequent frames relatively quickly.

Pre-processing the shadows before making the final image also offers more
creative control. For example, the renderer can be forced to use the “wrong”
shadow information. In this way light sources can be made to cast shadows
around corners, or an object can cast the shadow of an entirely different object.
Such manipulations are beyond the capabilities of most ray-tracers.

Advanced Lighting 9•1

For each light source that will create a shadow(s) in a scene, RenderMan
requires a special “image” to be generated from the view-point of the light
source. However, these special output files do not contain images as such, but
store information about how far away each part of the scene is from the light
source.

The following example is a very simple scene lit by a single (shadowing)
distant light.

y x

z

step 1 The first step in creating shadows is the production of a depth map for each
(shadow) light source. Because the output file from this step only contains
depth information it is unnecessary, when defining the scene from the view
point of a light, to specify the colour or surface properties of the objects
themselves, for example,

 FrameBegin 1
 Display "depth.pic" "zfile" "z"
 Format 128 128 1
 Projection "perspective" "fov" 110

 Translate 0 0 4 # equivalent to moving the view-point 4
 Rotate 180 0 1 0 # units directly above the origin of the scene

 WorldBegin
 ObjectInstance 1
 ObjectInstance 2
 WorldEnd
 MakeShadow "depth.pic" "shadow.tx"
 FrameEnd

Notice how this first step is contained within its own frame block. This isolates
it from remainder of the RIB script that produces the final full coloured
rendered image.

Advanced Lighting 9•2

LightSource shadowdistant" "intensity" 1.5 "from" [0 0 4]

"to" [0 0 0] "shadowname" "shadow.tx"

The first frame produces two files, namely, “depth.pic” and “shadow.tx”. The
display statement that produces “depth.pic” uses two new parameters,

 Display "depth.pic" "zfile" "z"

The inclusion of the letter “z” indicates to the renderer that it is to produce a
depth map rather than a normal full colour image. Step 1 is concluded with
the production of a texture file from the depth map,

 MakeShadow "depth.pic" "shadow.tx"

In the second step the texture file(s) produced in step 1 is (are) used by the
appropiate light source(s) to calculate the correct lighting values for each part
of the scene, for example,

step 1 – continued

There are several points to be noted in this example. Strictly speaking the RIB
script, for the sake of simplicity, has produced an incorrect shadow! Distant light
sources behave much like the sun – they produce shadows with parallel light. In
the first frame the depth map was made using perspective projection with a
field of view large enough to “see” the entire scene.

 Projection "perspective" "fov" 110

Without this simplification it would have been necessary to use orthographic
projection and to scale the scene in order for it to “fit” into a viewing space 1
unit by 1 unit – the dimensions of an orthographic viewing frame.

Alternatively, if the shadow version of a pointlight had been used instead of a
shadowdistant it would have been necessary to produce 6 depth maps – each
one corresponding to the 6 directions a point light source can radiate light ie.
top, bottom, left, right, front and back! The important point is that although the
final image is technically incorrect it is still CONVINCING.

Advanced Lighting 9•3

step 2

FrameBegin 2
 Display "half ball.tiff" "tiff" "rgba"
 Format 400 300 1
 Projection "perspective" "fov" 40

 Translate 0 1 8
 Rotate -120 1 0 0
 Rotate 25 0 0 1

 WorldBegin
 LightSource "shadowdistant" 1 "intensity" 1.5
 "from" [0 0 4] "to" [0 0 0] "shadowname" "shadow.tx"
 Color .5 .5 .5
 Surface "matte"
 ObjectInstance 1
 Color .5 .5 .5
 ObjectInstance 2
 WorldEnd
FrameEnd

RIB script

Experiments with single shadows

ObjectBegin 1
 Sphere 1 0 1 360
ObjectEnd
ObjectBegin 2
 Polygon "P" [-3 3 -1 -3 -3 -1 3 -3 -1 3 3 -1]
ObjectEnd

FrameBegin 1
 Display "depth.pic" "zfile" "z"
 Format 128 128 1
 Projection "perspective" "fov" 110

 Translate 0 0 4
 Rotate 180 0 1 0

 WorldBegin
 ObjectInstance 1
 ObjectInstance 2
 WorldEnd
 MakeShadow "depth.pic" "shadow.tx"
FrameEnd

FrameBegin 2
 Display "half ball.tiff" "tiff" "rgba"
 Format 400 300 1
 Projection "perspective" "fov" 40

 Translate 0 1 8
 Rotate -120 1 0 0
 Rotate 25 0 0 1

 WorldBegin
 LightSource "shadowdistant" 1 "intensity" 1.5 "from" [0 0 4]
 "to" [0 0 0] "shadowname" "shadow.tx"
 Color .5 .5 .5
 Surface "matte"
 ObjectInstance 1
 Color .5 .5 .5
 ObjectInstance 2
 WorldEnd
FrameEnd

Example 1
complete script

Advanced Lighting 9•4

When using a light source that creates shadows the renderer determines if a
point in a 3D scene lies within a shadow cast by another object by comparing
two distances. Firstly, it calculates the true distance from the point to the light
source and then it compares this value to the corresponding distance in the
texture file that was produced from a depth map. If the true distance is the
larger of the two then the screen pixel corresponding to the 3D point is shaded
a dark colour appropriate to a shadow. Alternatively, if the true distance is
smaller then the screen pixel is assigned the colour and brightness of the
corresponding 3D point on the surface of the object casting the shadow.

The Shadow Algorithm
– how it works

Advanced Lighting 9•5

tr
ue

 d
is

ta
nc

e
fr

om
 th

e
lig

ht

so
ur

ce
 to

 th
e

po
in

t “
P

”

di
st

an
ce

 a
s

“s
ee

n”
 fr

om

th
e

lig
ht

 s
ou

rc
e

–
de

pt
h

m
ap

“P”

“P” “P”

Both distances are the same, therefore, point “P” is not in shadow.

The true distance is the greater, therefore, point “P” is in shadow.

light source

#Example file for creating shadows using FrameUP
Option "limits" "bucketsize" [32 32]
ShadingRate 4
Display "test1""file" "rgb"

ObjectBegin 1
 Polygon "P" [-3 3 -1 -3 -3 -1 3 -3 -1 3 3 -1]
ObjectEnd
ObjectBegin 2
 Cone 2 1 360
ObjectEnd

Tween "from" 1 "to" 2 "frames" 100 "smooth"

KeyFrameBegin 1
 FrameBegin
 Display "shadow1.pic" "zfile" "z"
 Format 512 512 1
 Projection "perspective" "fov" 90

 #Position of shadowlight 1
 Rotate -153.4 1 0 0
 Rotate -90.0 0 0 1
 Translate 2.0 0.0 -4.0

 WorldBegin
 ObjectInstance 1
 Rotate 0 1 1 0
 ObjectInstance 2
 WorldEnd
 MakeShadow "shadow1.pic" "shadowmap1.tx"
 FrameEnd
 FrameBegin
 Display "test1""file" "rgb"
 Format 400 320 1
 Projection "perspective" "fov" 40
 Translate 0 0 12
 Rotate -120 1 0 0
 Rotate 25 0 0 1
 WorldBegin
 LightSource "shadowdistant" 1 "intensity" 2
 "from" [-2 0 4] "to" [0 0 0] "shadowname" "shadowmap1.tx"
 LightSource "ambientlight" 2 "intensity" 0.2
 Surface "plastic"
 Color 1 0 0
 ObjectInstance 1
 Color 1 1 0
 Rotate 0 1 1 0
 ObjectInstance 2
 WorldEnd
 FrameEnd
KeyFrameEnd

Using FrameUP to animate a scene with shadows

RIB script

The next two pages list a sample file that can be read and converted to an
animation RIB file by the utility program FrameUP. Unlike the animation files
found in the previous section each KeyFrameBegin/KeyFrameEnd block
contains two frames. The first creates the texture file used by the shadow-
distant light found in the second frame of each of the two key frames.

An example animation

Advanced Lighting 9•6

calculate the shadow inform-
ation for the shadowdistant
light in key frame number 1

use the shadow information…

KeyFrameBegin 2
 FrameBegin
 Display "shadow1.pic" "zfile" "z"
 Format 512 512 1
 Projection "perspective" "fov" 90

 #Position of shadowlight 1
 Rotate -153.4 1 0 0
 Rotate -90.0 0 0 1
 Translate 2.0 0.0 -4.0

 WorldBegin
 ObjectInstance 1
 Rotate 360 1 1 0
 ObjectInstance 2
 WorldEnd
 MakeShadow "shadow1.pic" "shadowmap1.tx"
 FrameEnd
 FrameBegin
 Display "test1""file" "rgb"
 Format 400 320 1
 Projection "perspective" "fov" 40
 Translate 0 0 12
 Rotate -120 1 0 0
 Rotate 25 0 0 1
 WorldBegin
 LightSource "shadowdistant" 1 "intensity" 2
 "from" [-2 0 4] "to" [0 0 0] "shadowname" "shadowmap1.tx"
 LightSource "ambientlight" 2 "intensity" 0.2
 Surface "plastic"
 Color 1 0 0
 ObjectInstance 1
 Color 1 1 0
 Rotate 360 1 1 0
 ObjectInstance 2
 WorldEnd
 FrameEnd

KeyFrameEnd

An example Animation
– continued

Advanced Lighting 9•7

The lines printed in bold show the values that change during the animation.
The cone tumbles through 360 degrees around an axis half way between the x
and the y axes.

calculate the shadow inform-
ation for the shadowdistant
light in key frame number 2

use the shadow information…

FrameUP allows geometry and other objects that have been saved in external
files to be imported into a document using a command called Import. This
statement copies the contents of an external file into a FrameUP document.
For example, suppose a particularly effective collection of light sources had
been used in a RIB script. The LightSource statements describing the lights
could be saved in a separate file, perhaps called "spherical lighting" ie.

 # a good set of modelling lights
 # for use with rounded objects
 LightSource "ambientlight" 1 "intensity" 0.1
 LightSource "distantlight" 2 "intensity" 0.7 "from" [4 0 0] "to" [0 0 0]
 LightSource "distantlight" 3 "intensity" 1.2 "from" [0 4 0] "to" [0 0 0]

This RIB ‘fragment’ could be could be re-used in another scene using the
Import command eg.

 # using Import to insert a
 # fragment of RIB script
 Projection "perspective" "fov" 40
 Display "square" "framebuffer" "rgba"
 Format 200 200 1

 Translate 1 0 23
 Rotate 360 0 1 0
 WorldBegin
 Import "fragment" "spherical lighting"
 Polygon "P" [-3 3 0 -3 -3 0 3 -3 0 3 3 0]
 WorldEnd

Because FrameUP does not make any assumptions about the file that is being
imported, and hence it does not check the validity of the file, it is your
responsibility to ensure the contents of the imported file “make sense” in the
context in which they are used. For example, it would be useless to import the
lights in the manner shown below,

 # using Import to incorrectly insert a
 # fragment of RIB script
 Projection "perspective" "fov" 40
 Display "square" "framebuffer" "rgba"
 Format 200 200 1

 Translate 1 0 23
 Rotate 360 0 1 0

Importing Fragments

Importing fragments 10•1

RIB (fragment)

RIB

RIB

Importing correctly

Overview

A sample fragment

Importing incorrectly

In theory, RenderMan should allow external objects, which it refers to as
‘entities’, to be imported into a RIB file using a command called "Geometry".
However, because this facility has not yet been implemented by PIXAR, the
Import statement was added to the list of commands understood by FrameUP
so that useful fragments of RIB script could be reused. The Import command
also allows objects of arbitary complexity, perhaps generated by sophisticated
modelling software, to be inserted into what are otherwise hand written
FrameUP documents. Provided an object has been exported by a modeller as a
RIB file and has been subsequently edited to remove any RIB statements that
do NOT refer to the surfaces that comprise the object there should not be any
rendering problems.

When making a library object, either by writing the RIB script by hand or with
a modeller, it is essential to locate the local origin of the object in such a way
that when the object is imported into a scene it can be positioned, rotated and
scaled as conventiently as possibly. For example, in the case of a four legged
chair the origin might best be located as follows,

On the other hand if the chair was a rocker it might be better to locate the
origin as shown below.

When importing objects, rather than say light sources or other ‘none surfaces’ ,
it is best to insert a pair of AttributeBegin/AttributeEnd statements at the
beginning and end of the file. In this way any transformations and shading
used within the imported file will not have any unexpected effects on the
objects added to a scene after the import command. Refer to the section
Shaping Up ex.7b (page 22) for an explanation about the use of
AttributeBegin/AttributeEnd.

Imported files cannot import copies of themselves or other fragments. For
example, the following version of “spherical lighting” is illegal,

 # fragments cannot refer to themselves
 # this will make FrameUP crash!!

 LightSource "ambientlight" 1 "intensity" 0.1
 LightSource "distantlight" 2 "intensity" 0.7 "from" [4 0 0] "to" [0 0 0]
 LightSource "distantlight" 3 "intensity" 1.2 "from" [0 4 0] "to" [0 0 0]
 Import "fragment" "spherical lighting"

 WorldBegin
 Polygon "P" [-3 3 0 -3 -3 0 3 -3 0 3 3 0]
 Import "fragment" "spherical lighting"
 WorldEnd

Fragments and objects

RIB (fragment)

Restrictions

Importing fragments 10•2

Attributes that form part of an imported file cannot be changed unless the
imported file is itself edited. It is sometimes better not to set the shading of an
object within the import file. For example, suppose several chairs are required
in a scene but each must be a different colour. Assuming the existance a
library file called "seat" that contains the geometry defining the chair, it would
be used as follows,

Projection "perspective" "fov" 40
Display "office seating" "framebuffer" "rgb"
Format 300 200 1

Translate 0 0 5
Rotate -120 1 0 0
Rotate 25 0 0 1

Import "fragment" "spherical lighting"
WorldBegin
 Color 1 0 0
 Import "fragment" "seat"

 Color 1 0 0
 Import "fragment" "seat"

 Color 1 0 0
 Import "fragment" "seat"
WorldEnd

RIB

Importing fragments 10•3

saved directly to
disk as a TIFF or
a PICT file

file

image

messages

The diagram shown below represents the environment in which RIB scripts
are written and rendered is shown below. Although it may appear to be
complicated, working with MacRenderMan is reasonably straight forward.
Initially, a RIB file is written using a word processor such as MicroSoft Word
and is saved as “text only” with a .rib extension, for example, scene1.rib.

A small utility program called “RibWriter” can be used to write RIB scripts
that correspond to a chosen camera position/angle, as well as a particular
colour. The information from RibWriter can be copied and pasted into the RIB
file being prepared in MS Word. “FrameUP” is described in the section
dealing with Animation.

Either the vector (ie. line) or the photo-realistic renderer can be selected via
“Chooser” in the same way as a network printer can be set-up for printing.
The RIB file is sent to the chosen renderer via a small application called
“RenderApp”. If the RIB file has been written so that the rendered scene is to
be displayed immediately, rather than being saved as a TIFF or PICT file,
RenderApp will open a window for the rendered image.

Information about the rendering process is automatically reported via a utility
called “RenderMonitor” in much the same way as the status of a network
printer is displayed by “PrintMonitor”.

Appendix A – an overview of MacRenderMan

MacRenderMan A•1

VectRman
or

PRman

Chooser

Render File…

RenderApp

Save As…
any_filename.rib

MS Word

pickup
Color or Camera

RibWriter

Current Renderer

progress report
and errors

RenderMonitor

image name

convert to an
animation

FrameUP

copy/paste

Appendix B – RenderMan Quick Reference

The reference material contained in this section is based largely on PIXAR’s
PhotoRealistic RenderMan Application Notes1 #1 and #8 published in May
1990. The original “Quick Reference” was intended to be used by
programmers and, therefore, contained a great deal of information that is
irrelevant to those who wish to write RIB scripts directly by hand. I have
tailored this reference to meet the needs of the Vcdn301 course. Several RIB
statements have been omitted2 because they relate to very advanced
capabilities of the RenderMan interface. The information in this reference is of
necessity very terse and is really only intended to act as a ‘memory jogger’.

RIB Summary Shape – geometric primitives Space – transformations and grouping
Cone Rotate
Cylinder Scale
Disk Skew
Hyperboloid Translate
Paraboloid AttributeBegin/End
Sphere ObjectBegin/End
Torus ObjectInstance
GeneralPolygon Sides
PointsGeneralPolygons SolidBegin/End
PointsPolygons TransformBegin/End
Polygon WorldBegin/End

Camera Shading
Clipping AreaLightSource
DepthOfField Atmosphere
Display Color
Exposure LightSource
Format MakeCubeFaceEnvironment
FrameAspectRatio MakeLatLongEnvironment
FrameBegin/End MakeShadow
MotionBegin/End MakeTexture
Perspective Opacity
Projection ShadingInterpolation
Shutter ShadingRate

Surface
Bookkeeping TextureCoordinates
#
Declare
Option

1 PhotoRealistic RenderMan Application Note #1 “A Brief Introduction to the
RenderMan Interface”; PhotoRealistic RenderMan Application Note #8 “RenderMan
Quick Reference”
2 These include references to splines, trim curves, patches and patch meshes;
transformation matrices; user defined coordinate systems; levels of detail; geometric
approximation; bump mapping (not supported on the Macintosh platform); error
handling; image filtering, sampling and quantization.

RenderMan Quick Reference B•1

Shape – geometric primitives

Cone Cone height radius thetamax parameters
Defines a partial or complete cone.
example

Cone 0.5 0.5 270 "Cs" [1 0 0 1 0 0 1 1 1 1 1 1]

"Cs" defines colours for the parameter space, which in this example provides the cone
with a red base and a white apex.

Cylinder Cylinder radius zmin zmax thetamax parameters
Defines a partial or complete cylinder.
example

Cylinder 0.5 0.2 1 360 "Os" [0 0 0 0 0 0 1 1 1 1 1 1]

"Os" defines opacity for the parameter space, which in this example provides the
cylinder with a fully transparent base (opacity = 0,0,0) and a fully opaque top
(opacity = 1,1,1).

Disk Disk height radius thetamax parameters
Defines a partial or complete disk.
example

Disk 1.0 0.5 270 "Os" [0 0 0 0 0 0 1 1 1 1 1 1]

Opacity is used here to give the disk a fully transparent rim and a fully opaque
centre.

Hyperboloid Hyperboloid x1 y1 z1 x2 y2 z2 thetamax parameters
Defines a partial or complete hyperboloid.
example

Hyperboloid 1.0 -1.0 -1.0 1.0 1.0 1.0 360

Paraboloid Paraboloid rmax zmin zmax thetamax parameters
Defines a partial or complete paraboloid.
example

Paraboloid 0.5 0.2 0.7 270

Sphere Sphere radius zmin zmax thetamax parameters
Defines a partial or complete sphere.
example

Sphere 0.5 0.0 0.5 360

"Cs" [1 0 0 1 0 0 0 0 1 0 0 1]

"Os" [0.7 0 0 0.7 0 0 1 1 1 1 1 1]

Both opacity and colour are used for the parameter space, which in this example
provides the sphere with a semi-transparent red “base” and an opaque blue “top”.

RenderMan Quick Reference B•2

Torus Torus rmajor rmin phimin phimax thetamax parameters
Defines a partial or complete torus.
example

Torus 3.5 0.25 0.0 180 300

GeneralPolygon GeneralPolygon nloops nvertices parameters
Defines a single convex or concave (general) planar polygon, with optional holes.
example

GeneralPolygon [3 3]

"P" [-1.0 -1.0 0.0 -1.0 1.0 0.0 1.0 -1.0 0.0 -0.5 -0.5 0.0 0.0 0.5 0.0

 0.5 -0.5 0.0]

PointsGeneralPolygons PointsGeneralPolygons numLoops numVertices listVertices parameters
Defines several planar general polygons, with optional holes, that share vertices.
example

PointsGeneralPolygons [2 2][4 3 4 3][0 1 3 4 6 7 8 1 2 5 4 9 10 11]

"P" [0 0 1 0 1 1 0 2 1 0 0 0 0 1 0 0 2 0 0 0.2 0.5 0 0.7 0.7 0 1.7 0.2 0 1.2 0.5

 0 1.7 0.7 0 1.7 0.2]

PointsPolygons PointsPolygon numVertices listVertices parameters
Defines several non-concave polygons, without holes, that share vertices.
example

PointsPolygons [3 3 3][0 3 2 0 1 3 1 4 3]

"P" [0 1 1 0 3 1 0 0 0 0 2 0 0 4 0]

Polygon Polygon listVertices parameters
Defines a single non-concave polygon with optional list of parameters that supplies
information about vertex normals, colour, opacity and/or texture coordinates.
examples
–no additional parameters

Polygon "P" [0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0]

–plus additional parameters relating to vertex colours
Polygon "P" [0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0]

"Cs" [1 0 0 0 1 0 0 0 1 1 1 1]

–plus additional parameters relating to vertex opacity
Polygon "P" [0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0]

"Os" [1 1 1 0 0 0 0.5 0.5 0.5 0.2 0.5 0.8]

RenderMan Quick Reference B•3

Shape – transformations and grouping

Rotate Rotate angle dx dy dz
Turns the object space so that it is rotated by "angle" degrees around the given axis
prior to a shape being defined.
example

Rotate 90 0 1 0

Scale Scale sx sy sz
Stretches or compresses the object space so that it is scaled along the x, y and z axes
prior to a shape being defined.
example

Scale 0.5 1.0 1.0

Skew Skew angle dx1 dy1 dz1 dx2 dy2 dz2
Shears the object space so that it is skewed by "angle" degrees along the x, y and z
axes prior to a shape being defined.
example

Skew 45 01 0 1 0 0

Translate Translate dx dy dz
Shifts the origin of the object space so that it is translated along the x, y and z axes
prior to a shape being defined.
example

Translate 0.0 1.5 0.0

AttributeBegin/End AttributeBegin/AttributeEnd
Forms a group of shapes, transformations and surface attributes.
example

AttributeBegin

some attributes such as color 1 0 0

AttributeEnd

ObjectBegin/End ObjectBegin identifier/ObjectEnd
Defines a collection of shapes as a "retained" object that can be inserted, or
instanced, within a scene.
example

ObjectBegin 4

object 1

object 2…

ObjectEnd

ObjectInstance ObjectInstance identifier
Inserts, or instancies, a previously retained collection of shapes as a single object.
example

ObjectInstance 4

RenderMan Quick Reference B•4

Sides Sides sides
Defines subsequent shapes as single sided or double sided.
example

Sides 2

SolidBegin/End SolidBegin operation/SolidEnd
Defines a collection of shapes as a "solid" object according to the rules of constructive
solid modelling ie. union, intersection and difference.
example

SolidBegin "union"

define two or more objects to be joined together as a single object

SolidEnd

TransformBegin/End TransformBegin/TransformEnd
Forms a group of shapes and transformations but IGNORES surface attributes.
example

TransformBegin

some transformations ex. Rotate

some shapes

TransformEnd

WorldBegin/End WorldBegin/WorldEnd
Freezes the characteristics of the camera and marks the beginning of a world
description.
example

WorldBegin

scene description

WorldEnd

RenderMan Quick Reference B•5

Camera

Clipping Clipping near far
Sets the near and far clipping planes along the direction of view.
example

Clipping 0.1 1000

DepthOfField DepthOfField fstop focallength focaldistance
Parameters to simulate the depth of field.
example

DepthOfField 22 1 26.7

Display Display name type mode parameters
Chooses a display by name and sets the type of output being generated.
examples

Display "filename" "file" "rgba"

Display "filename" "zfile" "z"

Display "windowname" "framebuffer" "rgba"

Exposure Exposure gain gamma
Controls the sensitivity and non-linearity of the exposure process.
example

Exposure 1.5 2.3

Format Format xresolution yresolution pixelaspectratio
Sets the horizontal and vertical resolution in pixels of the image to be rendered.
example

Format 400 300 1

FrameAspectRatio FrameAspectRatio ratio
Ratio sets the ratio of the width to height of the desired image.
example

FrameAspectRatio 1.333

FrameBegin/End FrameBegin/FrameEnd
Marks the beginning and end of a frame of animation.
example

FrameBegin 1

scene description for this frame

FrameEnd

RenderMan Quick Reference B•6

MotionBegin/End MotionBegin t0 t1…tn-1/MotionEnd
Marks the beginning and end of motion
example

MotionBegin [0 1]

transformation information at time 0

transformation information at time 1

MotionEnd

Perspective Perspective fov
Sets the camera to give a perspective view.
example

Perspective 90

Projection Projection name parameters
Sets the type of projection and activates the camera coordinate system ie. the world
coordinate system is only active between WorldBegin and WorldEnd.
example

Projection "perspective" "fov" 40

Shutter Shutter opentime closetime
Sets the times at which the shutter opens and closes.
example

Shutter 0 1

RenderMan Quick Reference B•7

Shading

AreaLightSource AreaLightSource name int parameters
Creates an area light and makes it the current light source. Each subsequent object is
added to the list of surfaces that define the area light.
example

AreaLightSource "finitelight" 1 "decayexponent" 0.5

AreaLightSource "glowlight" 2 "color" [0.5 0 0] "intensity" 0.6

Atmosphere Atmosphere name parameters
Sets the currently active atmosphere shader.
examples

Atmosphere "fog" "background" [0.2 0.2 0.3] "distance" 39.4

Atmosphere "depthcue" "background" [0.2 0.2 0.3] "mindistance" ?

"maxdistance" ?

Color Color red green blue
Sets the colour that will be applied to subsequent objects.
example

Color 0.2 0.3 0.9

LightSource LightSource name sequencenumber parameters
Creates a non-area ie. infinitely small, light source, turns it on, and adds it to any
other lights previously created.
example

LightSource "ambient" 2 "intensity" 10

MakeCubeFaceEnvironment
MakeCubeFaceEnvironment px nx py ny pz nz texturename fov filter swidth
twidth parameters
Converts six images in a standard picture file (for example a TIFF file) representing
six viewing directions into an environment map.
example

MakeCubeFaceEnvironment "foo.x" "foo.nx" "foo.y" "foo.ny" "foo.z" "foo.nz"

 "foo.env" 95 "gaussian" 2.0 2.0

MakeLatLongEnvironment
MakeLatLongEnvironment picturename texturename filter swidth twidth
parameters
Converts an image in a standard picture file (for example a TIFF file) representing a
latitude-longitude map whose name is picturename into an environment map called
texturename.
example

MakeLatLongEnvironment "long.tiff" "long.tx" "gaussian" 2 2

RenderMan Quick Reference B•8

MakeShadow
MakeShadow picturename texturename parameters
Convers a depth image file into a shadow map.
example

MakeShadow "shadow.tiff" "shadow.tx"

MakeTexture MakeTexture picturename texturename swrap twrap filter swidth twidth
Converts an image in a standard picture file (eg. TIFF) into a texture file.
examples

MakeTexture "globe.tiff" "globe.tx" "periodic" "periodic" "gaussian" 2 2

MakeTexture "globe.tiff" "globe.tx" "black" "black" "gaussian" 2 2

MakeTexture "globe.tiff" "globe.tx" "clamp" "clamp" "gaussian" 2 2

In the first example the image will if necessay repeat horizontally and vertically. In
the second example the image will be mapped once and will be surrounded by black.
While in the last example, the colour of the pixels image at the extreme edge of the
image will be “smeared” outward if there is enough space available on the object
being texture mapped.

Opacity Opacity c1 c2 c3
Sets the opacity to the colour channels c1, c2, c3, like the use of Color, subsequent
objects are set to these levels of opacity.
example

Opacity 0.5 1.0 1.0

ShadingInterpolation ShadingInterpolation type
Controls how the values are interpolated ie. estimated, between shading samples.
examples

ShadingInterpolation "constant"

ShadingInterpolation "smooth"

ShadingRate ShadingRate size
Sets the number screen pixels, across and down the image, the renderer will skip
between making its shading calculations – large numbers give fast but coarse images.
The skipped pixels are either shaded with constant or “smoothed” colour – see above.
example

ShadingRate 10

Surface Surface name parameters
Sets the current surface shader, subsequent surfaces acquire the ‘look’ of the chosen
surface.
example

Surface "wood" "roughness" 0.3 "Kd" 1.0

TextureCoordinates TextureCoordinates s1 t1 s2 t2 s3 t3 s4 t4
Sets the current set of texture coordinates.
example

TextureCoordinates 0.0 0.0 2.0 -0.5 -0.5 1.75 3.0 3.0

RenderMan Quick Reference B•9

Bookkeeping

any text upto the end of a line is a comment
Enables notes to be included in a RIB file and ensures these will be ignored by the
renderer.
examples

this is a comment

Color 1 0 0 #this is another comment

Declare Declare name declaration
Declares a non-standard parameter.
example

Declare "centrepoint" "uniform float"

Option Option name parameterslist
Allows any pre-set option to be set from within a RIB file.
example

Option "limits" "bucketsize" [24 24]

Option "limits" "texturememory" [1024]

RenderMan Quick Reference B•10

Appendix C – Shaders Reference

This reference provides information about the basic shaders that support
RenderMan. The data has be compiled from “The RenderMan Companion” by
Steve Upstill and the PIXAR document, “MacRenderMan Shaders” published
(August 1990) as part of “MacRenderMan Developers Stuff”.

Like ‘plug-ins’ for the Adobe image processing software PhotoShop, an almost
unlimited number of (potential) shaders can be added to a RenderMan
environment – this document only describes the essential ones.

Shader Summary LightSource Surface

ambientlight blue_marble

distantlight carpet

pointlight checker

spotlight cmarble

pointnofalloff glass

shadowdistant glassbal

shadowpoint glow

shadowspot matte

metal

Atmosphere plastic

depthcue rmarble

fog rsmetal

rubber

Displacement screen

cloth show_st

dented show_xyz

diaknurl sinknurl

droop spatter

emboss stippled

filament stone

sinknurl texmap

threads txtplastic

wood

transparent_texture

eroded

Shader Reference C•1

Surface Shaders

blue_marble "blue_marble" "Ks" "Kd" "Ka" "roughness" "txtscale" "specularcolor"

"Ks" 0.4 "Kd" 0.6 "Ka" 0.1
"roughness" 0.1
"txtscale" 1
"specularcolor" [1 1 1]

This shader gives a surface a very delicate marble-like appearance. It gives the
visual impression of turbulent fluid flow, as if the marble had been formed by
molten coloured rocks. The txtscale parameter scales the turbulence.

carpet "carpet" "Ka" "Kd" "scuff" "nap"

"Ka" 0.1 "Kd" 0.6
"scuff" 1 "nap" 5 "swirl" 1

This shader produces a carpeted surface, complete with scuff-marks. The scuff
parameter controls the “amount of scuff”, or the relative frequency of
intensity variations. Higher values produce more frequent scuffing. nap
describes the “shagginess” of the carpet. Higher values make a more coarse-
looking carpet.

The carpet shader makes a reasonable stab at anti-aliasing, so the actual grain
of the carpet fades away with distance.

There are no specular reflections from real carpet (at least on a macroscopic
scale), so the only lighting parameters are Ka and Kd, which have the usual
meanings of ambient and diffuse reflective intensities, respectively.

This way anti-aliasing is performed can cause linear artifacts in some cases.

checher "checker" "Kd" "Ka" "frequency" "blackcolor"

"Kd" 0.5 "Ka" 0.1
"frequency" 10
"blackcolor" [0 0 0]

This shader imposes a checker-board pattern over a surface. The frequency
parameter sets how many times the pattern is to repeate itself within the
texture space of the surface. Blackcolor sets the colour to be used for the
pattern.

Shader Reference C•2

cmarble "cmarble" "Ka" "Ks" "Kd" "roughness" "specularcolor" "veining"

"Ka" 0.1 "Ks" 0.4 "Kd" 0.6
"roughness" 0.1
"specularcolor" [1 1 1]
"veining" 1

This shader produces a marble that consists of coloured veins on a white
background with some greyish mottling. The vein colour is determined by the
current surface colour. The parameter veining controls the frequency of the
veins in the marble; higher values produce more and narrower veins.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

glass "glass" "Ka" "Ks" "Kd" "roughness" "specularcolor" "envname" "Kr"

glassbal "glassbal" "Ka" "Ks" "Kd" "roughness" "specularcolor" "envname" "Kr" "eta"

"Ka" 0 "Ks" 0.6 "Kd" 0
"roughness" 0.025 (for glass) or 0.2 (for glassbal)
"specularcolor" [1 1 1]
"envname" "your environment map"
"Kr" 0.5 "eta" 0.6

The glass shader makes an object appear to be made out of transparent and
possibly coloured glass. No refraction is attempted, so the glass appears to be
thin, but reflections are simulated using the environment map given with
envname. The environment map’s reflective intensity Kr can be controlled to
fine-tune the appearance; a lower-intensity reflection may look better on very
dark glass. Although you can use the shader even if you don’t have an
environment map (just ignore envname), it will look more like transparent
plastic then glass.

You can use the shader for either clear glass or coloured glass by setting the
surface colour (clear glass has color [1 1 1]). The transparency of the glass is
controlled only by the surface colour; if you want to make the glass less
transparent you should make the colour darker.

The glassbal shader can be used to make some objects look like solid glass. It
simulates the refraction seen through a sphere turning objects seen through
the glass upside-down and backwards. The shader needs the environment
map given with envname to this refraction. It will not work without an
environment map. Because the shader simulates refraction as if the object is a
sphere, it works well on curvy objects like teapots (and spheres), but will not
look correct on flat objects or cylinders.

Shader Reference C•3

The colour of the object can be set with the surface colour, just as with glass.
The transparency is somewhat different here, however, because the camera is
not really seeing "through" the object. Therefore, the surface opacity should
always be set to [1 1 1], and the relative intensity of the "refraction" will again
depend on the surface colour.

The parameter eta is the relative index of refraction of the atmosphere to the
glass. By default, this is the standard value of air (1.0) relative to glass (1.66).

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

glassbal needs an environment map; glass looks bad without one.

glow "glow" "attenuation"

"attenuation" 2

This shader imparts a glow to a surface. The glow is brightest when looking
directly at the glowing object, and falls off rapidly nearby.

matte "matte" "Ka" "Kd"

"Ka" 1 "Kd" 1

A matte surface exhibits only diffuse reflection, because it scatters light
uniformly with no preferred direction. That makes the apparent brightness of
such a surface independent of the direction from which it is viewed.

metal "metal" "Ka" "Ks" "roughness"

"Ka" 1 "Ks" 1
"roughness" 0.25

Very similiar to the matte surface shader except that this surface allows
specular reflections to occur ie. reflections are concentrated around the mirror
direction. Roughness controls the concentration of the specular highlight, a
high roughness value giving a more diffuse reflection.

plastic "plastic" "Ka" "Ks" "Kd" "roughness" "specularcolor"

"Ka" 1.0 "Ks" 0.5 "Kd" 0.5

Shader Reference C•4

"roughness" 0.1
"specularcolor" [1 1 1]

This shader models a plastic material as a solid medium with microscopic
coloured particles suspended within it. The specular highlight is assumed to
be reflected directly off the surface, and the surface colour is assumed to be
due to light entering the medium, reflecting off the suspended particles, and
re-emerging. This explains why the colour of the specular reflection is
different from the surface.

rmarble "rmarble" "Ka" "Ks" "Kd" "roughness" "specularcolor" "veining"

"Ka" 0.1 "Ks" 0.4 "Kd" 0.6
"roughness" 0.1
"specularcolor" [1 1 1]
"veining" 1

This shader produces a marble that consists of red veins on a white
background with some greyish mottling. The parameter veining controls the
frequency of the veins in the marble; higher values produce more and
narrower veins.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

rsmetal "rsmetal" "Ka" "Ks" "Kr" "roughness"

"Ka" 1.0 "Ks" 1.0 "Kr" 1.0
"roughness" 0.1

This shader uses random data for the reflection instead of requiring an
environment map. The parameter Kr controls the intensity of the reflection.
This shader is not recommended for simple spheres, it produces a chrome-
plated look on objects with more complex curvature.

rubber "rubber" "Ka" "Kd" "txtscale"

"Ka" 1.0 "Kd" 1.0
"txtscale" 1.5

This shader is similiear to a matte shader except that it includes small amounts
of white dust in the surface of the rubber. The amount of dust is controlled by
the parameter txtscale.

Shader Reference C•5

screen "screen" "Ks" "Kd" "Ka" "roughness" "density" "frequency" "specularcolor"

"Ks" 0.5 "Kd" 0.5 "Ka" 0.1
"roughness" 0.1
"density" 0.25 "frequency" 20
"specularcolor" [1 1 1]

This shader produces a wire-frame appearance. The frequency parameter
controls how many grid lines there are in the surfaces texture space; the
default produces 20 grid lines per surface. The density parameter controls the
portion of the surface that is opaque. The default 0.25 means that the "wires"
will cover 25% of the texture space.

show_st "show_st"
no parameters

For each point on a surface, this shader sets its red and green colour equal to
the texture coordinates at that point. Transparency cannot be set with this
shader - all surfaces are set to be opaque.

show_xyz "show_xyz" "xmin" "ymin" "zmin" "xmax" "ymax" "zmax"

"xmin" -1 "ymin" -1 "zmin"-1
"xmax" 1 "ymax" 1 "zmax" 1

This shader converts points within a bounding box, given by the parameters,
into red, green and blue values.

spatter "spatter" "Ka" "Ks" "Kd" "roughness" "specularcolor" "basecolor"
"spattercolor" "specksize" "sizes"

"Ka" 1 "Ks" 0.7 "Kd" 0.5 "roughness" 0.2
"specularcolor" [1 1 1] "basecolor" [0.1 0.1 0.5] "spattercolor" [1 1 1]
"specksize" 0.01 "sizes" 5

This shader makes objects look like blue camp cookware with white paint
spatters. Actually, both the blue basecolor and the white spattercolor can be
changed if you desire.

The paramter specksize controls the size of the paint specks as you would
expect. However, there are a range of sizes of paint specks controlled by the
parameter sizes. Lower (integer) values produce smaller and more uniform
specks. Higher values produce some larger blotches and specks of many
different sizes.

Shader Reference C•6

The parameters Ka, Ks and Kd, have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

stippled "stippled" "Ka" "Ks" "Kd" "roughness" "specularcolor" "grainsize" "stippling"

"Ka" 0.1 "Ks" 0.3 "Kd" 0.8
"roughness" 0.3
"specularcolor" [1 1 1]
"grainsize" 0.01
"stippling" 0.2

This shader makes objects appear to be made of plastic with lots of little
bumps, as computer keyboards, camera surfaces, stucco and many other
objects. This is done by making the surface appear to have intensity variation
in small grains or granules. The parameter grainsize controls the size of these
granules, and stippling controls the relative variation in intensity of the
granules; larger values produce a rougher looking surface.

This shader makes a fairly good attempt at anti-aliasing itself, so the granules
should appear to fade out with distance in a way similiar to a ’real’ stippled
surface.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

stone "stone" "Ka" "Ks" "Kd" "roughness" "specularcolor" "scale" "nshades"
"exponent" "graincolor"

"Ka" 0.2 "Ks" 0.9 "Kd" 0.8
"roughness" 0.3
"specularcolor" [1 1 1]
"scale" 0.02 "nshades" 4
"exponent" 2
"graincolor" [0 0 0]

This shader makes objects look like they are carved our of grainular stone, like
granite, by making "crystals" of varying intensity and colour. The parameter
scale controls the size of the "crystals", or grains; larger values make larger
grains. This is the only parameter that most users will want to change.

The parameter nshades is the number of unique intensity levels found in the

Shader Reference C•7

grains. Higher values of this will produce less "simplistic" looking stone.
Setting nshades equal to 3 will produce stone that looks remarkably like the
spattered-paint fake stone Zolatone. The exponent parameter controls the
distribution of intensity levels; higher values push the intensities toward the
darker end (more toward graincolor, as described below).

The "intensity" levels are actually levels of mixing two colours, the surface
colour and the graincolor parameter. Since graincolor is black by default, the
different colours normally are in fact different intensities of the surface colour.
However, if you want red-and-green speckly stone for some reason, you could
do this by setting the surface colour and graincolor appropriately, but you
should probably set nshades to something pretty low to avoid getting lots of
weird colours between red and green.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

texmap "texmap" "Ka" "Ks" "Kd" "roughness" "specularcolor" "texname" "maporigin"
"xaxis" "yaxis" "zaxis" "maptype "s1" "t1" "s2" "t2" "s3" "t3" "s4" "t4"

"Ka" 1.0 "Ks" 0 "Kd" 1.0
"roughness" 0.25
"specularcolor" [1 1 1]
"texname" "name of texture file"
"maporigin" [0 0 0]
"xaxis" [1 0 0] "yaxis" [0 1 0] "zaxis" [0 0 1]
"maptype" 3 (ie. no projection)
"s1" 0 "t1" 0 "s2" 1 "t2" 0
"s3" 0 "t3" 1 "s4" 1 "t4" 1

This shader texture maps a surface. The name of the texture file is given by
texname. The parameters maporigin, xaxis, yaxis, zaxis, maptype, s1-4 and t1-
4 are passes directly

Note that because the t component of a texture map is displayed on a monitor
as increasing downward, textures mapped onto surfaces can easily appear to
be upside-down. You should be careful to orient your coordinate system
correctly when using projections for texture mapping. For example, if you are
using planar projection you may want to have the y axis of the projection
plane pointing down.

The maptype parameter indicates the following types of projection:
0 planar,

Shader Reference C•8

1 cylindrical,
2 spherical,
3 no projection, and
4 automap.

In the case of spherical mapping the parameters maporigin, xaxis, yaxis and
zaxis describe the coordinate system of the projection sphere. The maporigin
is naturally the center point of the sphere. The xaxis, yaxis and zaxis are points
describing the 3 coordinate axes relative to maporigin. The texture map wraps
around the "equator" of the sphere such that the seam is located on the
positive x-axis of the sphere.

The surface is texture-mapped as if it were painted with the image in the file.
Normal shading techniques are then used to render the surface, as specified in
the normal way.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. Roughness and specularcolor
control the sharpness and colour of the specular highlight.

txtplastic "txtplastic" "Ks" "Kd" "Ka" "roughness" "specularcolor" "mapname"

"Ks" 0.5 "Kd" 0.5 "Ka" 1
"roughness" 0.1
"specularcolor" [1 1 1]
"mapname" "name of a texture file"

This shader is based on the "plastic" surface shader. The parameter mapname
allows an image previously converted to a texture file to be mapped onto a
surface.

wood "wood" "Ka" "Ks" "Kd" "roughness" "specularcolor" "grain" "swirl" "swirlfreq"
"c0" "c1" "darkcolor"

"Ka" 1 "Ks" 0.4 "Kd" 0.6 "roughness" 0.2
"grain" 5 "swirl" 0.25 "swirlfreq" 1
"specularcolor" [1 1 1]
"darkcolor" [dependent on the surface colour]
"c0" [0 0 0] "c1" [0 0 1]

This shader creates a realistic-looking wood. The frequency of the wood grain
can be changed with the grain parameter. The relative amount or amplitude of
the turbuent swirl in the grain is controlled by the swirl paramater, and swir-
freq controls the frequency of this turbulence. Low values of swirl produce
more uniform looking wood, while low values of swirlfreq make the wood

Shader Reference C•9

appear to be more knotty. Obviously these two parameters interact to a large
extent. You should be careful not to set swirl too high or swirlfreq too low or
the wood will become a jumbled mess.

The wood is simulated by creating a grain that is essentially composed of
differently coloured concentric “cylinders” around a central axis defined by
the two points c0 and c1. This axis is the z axis by default. Note that the
orientat- ion of this axis can be varied either by changing these two
parameters or by doing some transformations between the call to the shader
and the definition of the geometry. Either one of these approaches may make
more intuitive sense in different applications.

The colour of the wood will normally consist of bands of different intensities
of the surface colour. This is the most generally useful way of invoking the
shader. However, for special appearances this can be changed by changing the
darkcolor parameter, which controls the colour of the dark grain of the wood.
The different intensity levels are actually levels of mixing between this colour
and the surface colour, so setting the surface colour to red and darkcolor to
white will produce red wood with white grain and various shades in between.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight. This shader can
have problems with aliasing.

transparent_texture "Ks" "Kd" "Ka" "roughness" "specularcolor" "texname" "traname"

"Ks" 0 "Kd" 1.0 "Ka" 1.0 "roughness" 0.1
"specularcolor" [1 1 1]
"texname" ["name of the texure file to be used for texturing"]
"traname" ["name of the texure file to be used for transparency"]

This shader uses two texture files. Like the shader texmap, the file associated
with "texname" is used as a texture map – except that this shader provides no
control over the type of projection used. The other texture file, associated with
"traname", controls the transparency of the surface(s) to which this shader is
assigned. The gray scale values of "traname" alter the level of transparency of
the shaded surface. Black pixels of the image make the corresponding parts of
a surface fully transparent while white pixels renders the surface opaque.

eroded "eroded" "Ks" "Ka" "Km" "roughness"

"Ks" 0.4 "Ka" 0.1 "Km" 0.3
"roughness" 0.25

This shader erodes a "plastic-like" surface in such a way that parts of it are
worn down to be transparent. The Km parameter controls the magnitude of
the erosion.

Shader Reference C•10

LightSource Shaders

ambientlight "ambientlight" "intensity" "lightcolor"

"intensity" 1
"lightcolor" [1 1 1]

An ambient light source supplies light of the same colour and intensity to all
points on all surfaces

distantlight "distantlight" "intensity" "lightcolor" "from" "to"

"intensity" 1
"lightcolor" [1 1 1]
"from" [0 0 0] "to" [0 0 1]

Unlike an ambient source, a distant source casts its light in only the direction
defined by the from and to parameters. Otherwise the output light is the same
as an ambient light.

pointlight "pointlight" "intensity" "lightcolor" "from"

"intensity" 1
"lightcolor" [1 1 1]
"from" [0 0 0]

A point light source is the converse of a distant light. It radiates light in all
directions, but from a single location. It has a from parameter, but no to.

spotlight "spotlight" "intensity" "lightcolor" "from" "to" "coneangle" "conedeltaangle"
 "beamdistribution"

"intensity" 1.0
"lightcolor" [1 1 1]
"from" [0 0 0] "to" [0 0 1]
"coneangle" randians (30) "conedeltaangle" radians (5) "beamdistribution" 2

This shader reproduces the lighting effect of a spot light.

The intensity of the light varies from 0 (off) to any positive value (usually 1)
representing the light at full intensity. The lightcolor parameter is an RGB
triple representing the colour of light emitted by the source.

Shader Reference C•11

The from and to parameters specify the direction in which the light is shining.
The coneangle and conedeltaangle parameters specify the distribution of the
light as a cone-shaped beam, whose intensity falls off with the angle from the
center to the cone. The falloff from the cone center is a "square-law" falloff
(cosine of this angle raised to the power of 2) by default, but can be changed to
a higher (or lower) power by setting the beamdistribution parameter.

pointnofalloff "pointnofalloff" "intensity" "lightcolor" "from"

"intensity" 1.0
"lightcolor" [1 1 1]
"from" [0 0 0]

This is a point light shader without an inverse square intensity falloff. It is
useful for lighting a scene when you don’t want to go through the process of
calculating the large intensity usually required to get a normal point light to
look the way you want it. It is also useful for producing uniform lighting from
objects inside a scene, without the "pooling" normally associated with point
light sources.

In addition, some modelling systems, for example, work only with point light
sources. In such a system some point lights may be placed far away from the
scene to simulate distant lights, and this shader is a good choice in such
circumstances.

The intensity of the light varies from 0 (off) to any positive value (usually 1)
representing the light at full intensity. The lightcolor parameter is an RGB
triple representing the colour of light emitted by the source.

The from parameter represents the position of the light source in space.

shadowdistant "shadowdistant" "intensity" "lightcolor" "from" "to" "shadowname" "samples"
"width"

 "intensity" 1.0 "lightcolor" [1 1 1]
"from" [0 0 0] "to" [0 0 1]
"shadowname" (name of a shadow map)
"samples" 16
"width" 1

This is a normal distant light with an optional shadow map parameter given
with shadowname. If a shadow map is not supplied the light behaves like a
normal distant light source.

The paramter samples controls the sampling rate for filtering the shadow
map. Higher values will produce less noisy-looking shadows, but will take

Shader Reference C•12

significantly longer. You can produce a (very noisy) test shadow very rapidly
by setting samples to 1.

The width parameter controls "overfiltering" in the s and t directions. Higher
values will give shadows more blurry edges, which can be used either as an
effect or to hide the jagged edges or a low-resolution shadow map.

The intensity of the light varies from 0 (off) to any positive value (usually 1)
representing the light at full intensity. The lightcolor parameter is an RGB
triple representing the colour of light emitted by the source.

The from and to parameters specify the direction in which the light is shining.

shadowpoint "shadowpoint" "intensity" "lightcolor" "from" "sfpx" "sfnx" "sfpy" "sfny" "sfpz"
"sfnz" "samples" "width" "shadowname"

"intensity" 1.0
"lightcolor" [1 1 1]
"from" [0 0 0]
"sfpx" "sfnx" "sfpy" "sfny" "sfpz" "sfnz" (6 shadow maps)
"samples" 16
"width" 1
"shadowname"

This is a point light source that can cast shadows in all directions. To do this,
you must supply 6 shadow maps, sfpx, sfnx, sfny, sfpz and sfnz for the
positive and negative x, y and z directions respectively. This is very similiar to
the idea of creating an environment map from 6 cube-face images. If any of
the cube faces are not supplied, the shader will behave as a normal point light
in those directions. For best results, the field of view for shadow images
should be greater than 90 degrees (95 recommended).

The paramter samples controls the sampling rate for filtering the shadow
map. Higher values will produce less noisy-looking shadows, but will take
significantly longer. You can produce a (very noisy) test shadow very rapidly
by setting samples to 1.

The width parameter controls "overfiltering" in the s and t directions. Higher
values will give shadows more blurry edges, which can be used either as an
effect or to hide the jagged edges or a low-resolution shadow map.

The intensity of the light varies from 0 (off) to any positive value (usually 1)
representing the light at full intensity. The lightcolor parameter is an RGB
triple representing the colour of light emitted by the source.

The from parameter specifies the position of the light source in space.

Shader Reference C•13

shadowspot "shadowspot" "intensity" "lightcolor" "from" "to" "coneangle" "conedeltaangle"
"beamdistribution" "shadowname" "samples" "width"

"intensity" 1.0
"lightcolor" [1 1 1]
"from" [0 0 0] "to" [0 0 1]
"coneangle" randians (30) "conedeltaangle" radians (5) "beamdistribution" 2
"shadowname" "name of the shadow file"
"samples" 16 "width" 1

This light is a spotlight with an optional shadow map parameter
shadowname. If a shadow map is not used the light is a normal spotlight.

The paramter samples controls the sampling rate for filtering the shadow
map. Higher values will produce less noisy-looking shadows, but will take
significantly longer. You can produce a (very noisy) test shadow very rapidly
by setting samples to 1.

The width parameter controls "overfiltering" in the s and t directions. Higher
values will give shadows more blurry edges, which can be used either as an
effect or to hide the jagged edges or a low-resolution shadow map.

The intensity of the light varies from 0 (off) to any positive value (usually 1)
representing the light at full intensity. The lightcolor parameter is an RGB
triple representing the colour of light emitted by the source.

The from and to parameters specify the direction in which the light is shining.

The coneangle and conedeltaangle parameters specify the distribution of the
light as a cone-shaped beam, whose intensity falls off with the angle from the
center to the cone. The falloff from the cone center is a "square-law" falloff
(cosine of this angle raised to the power of 2) by default, but can be changed to
a higher (or lower) power by setting the beamdistribution parameter.

Shader Reference C•14

Displacement Shaders

cloth "cloth" "freq" "depth"

"freq" 500
"depth" 0.02

This shader produces a cloth-like perpendicular weave pattern. The freq
parameter changes the frequency of the "threads" (higher values mean the
threads are closer together), and depth controls the height of the threads. The
surface aliases pretty fiercely, but real cloth actually produces a somewhat
similiar effect, so it looks fairly realistic.

dented "dented" "Km"

"Km" 1.0

This shader produces a dented surface. The amount of denting is controlled
by Km.

diaknurl "diaknurl" "maporigin" "xaxis" "yaxis" "zaxis" "freq" "depth" "width" "radius"
"zmin" "dampzone"

 "maporigin" [0 0 0]
"xaxis" [1 0 0] "yaxis" [0 1 0] "zaxis" [0 0 1]
"freq" 10 "depth" 0.25 "width" 0.05
"radius" (refer to notes)
"zmin" "zmax" (refer to notes)
"dampzone" 0

This shader cuts a diamond knurl pattern into a cylindrical object. The
parameters maporigin, xaxis, yaxis, and zaxis are used to do a cylindrical
projection.

The freq parameter gives the number of grooves to cut per unit length along
the z axis; higher values give closer grooves. The depth parameter controls the
depth of the grooves, and the width parameter controls the width of the
grooves. In order to render a correctly diamond-shaped pattern, the radius of
the cylindrical object must be given with the radius parameter.

By default, the diamond knurl will be rendered along the entire length (along
the z axis in shader space) of the cylinder. However, you can set minimum
and maximum bounding z values with zmin and zmax parameters. The
surface will not have knurl pattern cut outside these boundaries. In addition,
you can make the knurl smoothly fade out instead of abruptly stopping at

Shader Reference C•15

these boundaries by setting the dampzone parameter. This parameter controls
the width of the zone in which the depth of the grooves goes to zero. This
zone is inside the zmin and zmax boundaries.

Remember to set the displacement bounds attribute when using this shader.

This shader can experience severe aliasing.

droop "droop" "Km"

"Km"

This shader droops or sags a surface downward as if under the influence of
gravity. ’Downward’ for this shader means moving a surface in negative y.

emboss "emboss" "Km" "texname"

"Km" 0.03
"texname" "name of a texture file that will control the embossing"

This shader embosses a surface according to an image given with the
parameter texname. Pale areas of an image used for the texture file will push
the surface "inward". The magnitude of the displacement is controlled by the
paramter Km.

filament "filament" "frequency" "phase" "width"

"frequency" 5.0
"phase" 0
"width" 0.3

This shader turns a cylinder into a spiral light-bulb filament. The filament can
be brought to a point by applying the same shader to two cones at the ends of
the cylinder. The frequency and phase parameters are identical to those of the
"threads" shader.

sinknurl "sinknurl" "maporigin" "xaxis" "yaxis" "zaxis" "freq" "depth" "zmin" "zmax"
"dampzone"

"maporigin" [0 0 0]
"xaxis" [1 0 0] "yaxis" [0 1 0] "zaxis" [0 0 1]
"freq" 100 "depth" 0.005
"zmin" "zmax" (see notes)
"dampzone" 0

Shader Reference C•16

This shader cuts a sinusoidal knurl grooves along the length of a cylindrical
object. The paramters maporigin, xaxis, yaxis and zaxis are used to do a
cylindrical projection.

The freq parameter gives the number of grooves to cut around the
circumference of the object. By default this number is quite high, but low
numbers produce a shape like a classic Greek column. The depth parameter
controls the depth of the grooves.

By default, the diamond knurl will be rendered along the entire length (along
the z axis in shader space) of the cylinder. However, you can set minimum
and maximum bounding z values with zmin and zmax parameters. The
surface will not have knurl pattern cut outside these boundaries. In addition,
you can make the knurl smoothly fade out instead of abruptly stopping at
these boundaries by setting the dampzone parameter. This parameter controls
the width of the zone in which the depth of the grooves goes to zero. This
zone is inside the zmin and zmax boundaries.

Remember to set the displacement bounds attribute when using this shader.

This shader can have problems with aliasing.

threads "threads" "maporigin" "frequency" "depth" "phase" "zmin" "zmax" "dampzone"

"maporigin" [0 0 0]
"frequency" 5 "depth" 0.1 "phase" 0
"zmin" "zmax" (refer to notes)
"dampzone" 0

This shader cuts a right-handed thread into a cylindrical object using the
parameters maporigin, xaxis, yaxis, and zaxis to do a cylindrical projection.

The parameter freq gives the number of threads per unit length along the
cylinder. The depth parameter controls the depth of the thread, and phase
rotates the threads around the z axis of the cylinder. A value of 0 means no
rotation and 1 means 360 degree rotation. This can be used to match threads
from different cylinders.

By default, the threads will be rendered along the entire length (along the z
axis in shader space) of the cylinder. However, you can set minimum and
maximum bounding z values with zmin and zmax parameters. The surface
will not have a thread pattern cut outside these boundaries. In addition, you
can make the knurl smoothly fade out instead of abruptly stopping at these
boundaries by setting the dampzone parameter. This parameter controls the
width of the zone in which the depth of the grooves goes to zero. This zone is
inside the zmin and zmax boundaries.

Shader Reference C•17

Remember to set the displacement bounds attribute when using this shader ie.

Attribute "bound" "displacement" [1.5]

This shader has problems with aliasing. The ShadingRate usually needs to be
set to quite a low number.

Shader Reference C•18

Atmosphere Shaders

depthcue "depthcue" "mindistance" "maxdistance" "background"

"mindistance" 0
"maxdistance" 1
"background" [0 0 0]

This atmospheric shader linearly adds the background colour according to the
distance between the camera and a surface. No background colour is added if
the surface is less than mindistance away. The background colour eliminates
the surface colour entirely for points farther than maxdistance. In between, the
two colours are mixed.

fog "fog" "distance" "background"

"distance" 1
"background" [0 0 0]

This atmospheric shader is somewhat more realistic for emulating
atmospheric absorption. It assumes that the attenuation of the surface colour
in the fog is never complete, as it is in the depth-cue shader.

Shader Reference C•19

The purpose of this project is to explore the creative potential of displacement
and texture maps; it is also intended to underscore the distinction between
shape and shading – between the underlying geometry of an object and its
outward visual apperance. Through this project you will learn how to

 • create displacement and texture maps,
 • control an abstraction called “parameter space”
 • apply these maps to a quadric surface, and
 • make a sphere as visually interesting as the surface of a natural object.

A simple object has been deliberately chosen for this project in order to focus
your attention on controlling the process of shading, rather than shaping, an
object.

You are to analyse two natural objects in terms of their suface attributes, these
are to include such features as variations in colour, bumpiness, shininess
(reflectivity), diffuseness and transparency. In short, how they interact with light.
You will apply the characteristics of your chosen natural surfaces to two
spheres. The natural objects, whose surfaces you are attempting to “re-create”,
need not be spherical. Your images will be judged by the extent to which they
portray spherical versions of the original objects – no matter how inconguent
that might be, for example, a spherical banana, leaf or toe-nail!

Your submission will consist of two sets of files. Each rendered image must be
accompanied by

 • the RIB file you wrote to create the finished image, and the
 • the original images used for the texture and displacement maps.

We will aim to create high resolution images suitable for recording to 35mm
transparency film via our LFR film recorder. The fully rendered images
should have an alpha channel and be saved in the TIFF file format with a
resolution of 1166 by 800 pixels. All images should be LZW compressed; this
can be done using RenderApp or PhotoShop.

It is left for you to decide the resolution of the TIFF images that you will use
for the texture and displacement maps. In general each “source” image should
not exceed 5MB in size; again these should be compressed using LZW. Do
NOT submit the texture files.

The files relating to each sphere must be located in their own folder ie. at least
three files in total. These should be placed in a folder clearly identified with
your name and should be copied to the archive server.

Appendix D
Project 1 Separating shape from shading

Overview

Projects D•1

Submission

In this project you will combine a computer generated scene with a photo-
graphic image of the interior of a building or other architectural space. The
computer generated scene should consist of a simple object or objects viewed
by a virtual camera set to match the characteristics of the camera that
recorded the photograph ie. position, orientation, focal length and f-stop.

The project will be completed in two separate phases. In the first, the objects
in the synthetic scene will be modelled, viewed and the resulting image
composited with the photograph. At this stage NO particular attention will
be given to lighting the synthetic scene or assigning realistic surface
attributes to the models. Emphasis will be on

 • matching the viewpoint of the virtual and ‘real’ camera,
 • matching the scale, placement and orientation of the models with the
 scene portrayed in the photograph.

In the second phase, light sources will be added to the synthetic scene in
order to match the illumination of the models with the ‘real’ interior. Appro-
priate surfaces will be assigned to the models and the refined virtual scene
will again be viewed and composited with the photograph. Compositing will
be done using PhotoShop and the synthetic scenes will be created using hand
written RIB files rendered with RenderMan.

The aesthetics underpinning the final composition can be anything from the
literal to the sarcastic; the synthetic objects can be modelled to be entirely
appropriate to their photographic “home” or may be startlingly incongruent
with the context provided by the photographic image.

The traditional separation between computer generated imagery and “live
action” recording is now almost a thing of the past. The integration of
imagery derived from the inner representations of a computer system and
scenes captured through standard photographic techniques is challenging
our notions of what is cinematically real and believable. What makes “special
effects” special is often not so much what is added in the post-production
process–a dinosaur here, or a dinosaur there–but by what is subtly altered or
removed. This might be the judicious removal of items that were thought to
be out of camera when the original footage was filmed. It might be the
background, props or even the actors themselves that an editor deems super-
fluous to a scene.

Research is well underway on the generation of photo-realistic synthetic
actors and more especially, as in the case of the research by Thalman et al,
synthetic actresses.

Overview

Projects D•2

Background

Project 2 Combining the ‘real’ and the ‘imaginary’

Before the turn of the century movie stars, or indeed, any type of performer,
may literally be even more pre-processed than the current crop of charicatured
symbols emanating from the film, television and music industries.

With the advent of sophisticated VR systems, probably at the beginning of the
next century, the propagation and wide acceptance of, perhaps even demand
for, synthetic actors over ‘real’ ones will be paralleled on personal/home VR
systems.

The spread and wide acceptance of synthetic actors compared to real ones may
become driven not so much by what mass audiences wish to watch (passively)
on film and video as by what they will become devoted to as a result of
interacting with personal/home VR systems. In a ‘media world’ dominated by
male fantasies, the enlightening promise of VR, like that of television before it,
seems set to become subservient to financial returns and corporate market
forces. For those in society who at one time or another are unable to ‘test
reality’, the combination of seamless image synthesis and the immersive
experiences of VR may lead to behaviour that will, by comparison, make the
current debate about the link between criminality and explicit violence on the
television and cinema seem like a trivial linguistic parlour game.

But how difficult is it to combine the real and the imaginary; the photographic
and the synthetic? This project is designed to encourage you to explore the
technical and aesthetic issues involved in synthesing imagery.

Nan–o–sex and Virtual Seduction
Siggraph Panel Session
Computer Graphics Proceedings of SIGGRAPH 93

Computer Graphics in Visual Effects – Course Notes Siggraph ’93
Charles Gibson

Computer Graphics in Visual Effects, Cost Effective Special Effects
Section 4 – Course Notes Siggraph ’93
Ricard Hollander

A Once and Future War
Jody Duncan
Cineflex issue 47, August 1991

An Integrated Control View of Synthetic Actors
D. Boisvert, N. Magnenat-Thalmann and D. Thalmann
New Advances in Computer Graphics
Proceedings of CG International 1989

Projects D•3

Readings

All modern interfaces use small pictograms called icons to help users interact
with a computer system. The icons, generally much smaller than 100 pixels
square, are used

 • as a system of static signage to enable a users to orientate themselves 	
 within an imaginary electronic space, somewhat like highway signs and
 road markings,
 • to dynamically provide a response, or feed-back, to support the users
 sense of interaction.

An icon as a sign can represent

 • an object, such as a “recycler” for destroying files, fig 1,
 • a concept or an abstraction – a body of knowledge such as an historical
 data base stored on a CD, fig 2,
 • an action, for example a check box that controls colour printing, fig 3.

Background

Project 3 Three Dimensional Icons for a Graphical User Interface

fig. 1 fig. 2

Icons are used extensively to represent storage devices, hard disks, diskettes
and CD’s, the directory structure of the file system and the files themselves.
Often dozens of icons are used within a single application as ‘covers’ for
buttons or the cells in tool palettes, fig 4. Such buttons and cells often have two
graphics associated with them, one for the button’s dormant state and the
other to indicate to the user that some change has or is about to occur. For
example, a button might normally have an icon that represents it’s “UP”
condition which is subsequently replaced by another icon to give the illusion
of the button having a “DOWN” condition when a user presses it, figs 5 and 6.

fig. 3 check box OFF

fig. 3 check box ON

Projects D•4

fig. 4

fig. 5 button UP

fig. 6 button DOWN

The majority of interfaces used at present are two dimensional even though, as
can be seen by the figures on the previous page, there is often an implied
depth. Interactive information systems, such as desktop computers,
multimedia CD’s, interactive television, information kiosks and “games”
consoles will move away from using solely two dimensional elements in their
user interface, such as ‘flat’ icons and buttons. Instead, three dimensional
representations combined with various transformations (animations) will
enliven, what many people now see as the bland uniformity that exists from
one interface design to another.

The best designs will undoubtedly be those that use three dimensional
graphics in a way that improves communication rather than those that have
gratuitously applied 3D techniques. For example, an icon that represents some
information on a hard disk might, when selected by a user, undergo a 3D
transformation that conveys an animated “explanation” of what it represents,
rather than, as is now the case, merely undergoing a colour inversion to show
it has been selected. How often, when faced with the task of learning a new
software package, have you wondered about the function a particular item in a
tool palette? Using animated graphics, the icons in a palette might “act-out”
their function, or divide or otherwise “decompose” into several more easily
understandable ‘sub-icons’.

Projects D•5

Sub-division is one way in which an icon could decompose to provide more
information to a user. For example, an icon representing the category “New
Zealand” on a CD dealing with “Tourism in the Pacific” might divide into two
or three sub icons representing, “sights and sounds”, “adventure” and
“relaxation”, when selected by a user. The area of interface design posed
several problems. For example, can 3D graphics help in sustaining an illusion
that users are entering an informational space and not just browsing a
computerised version of a travel agents notice board?

This third and final project of the course is concerned with employing 3D
computer graphics animation to some element of a real or imaginary graphical
user interface. You are to design and animate a 3D icon(s). However, because
the project is primarily concerned with 3D computer animation and not the
issue of interface design as such, you are NOT required to design an interface
in which the icon(s) could be used. However, you are strongly advised to be
mindfull of the questions raised in the previous paragraph.

There are no restrictions on the colour depth of your graphics ie. you may
break the artificial colour barriers that are normally imposed on this work, and
the content of what your icon, or system of icons represent is entirely your
decision. However, the following restrictions apply,

 • maximum screen space is 300x300 pixels – look upon this as your “stage”
 and the icons as the “actors”,
 • maximum duration of any single animated segment such as a transformat-
 ion, a transition or other effect is 50 frames.

Submissions,

 • at least ONE “demo” animation of your 3D icon/button in the form of a
 QuickTime movie,
 • all texture, transparency, displacement maps and rib files used in the
 production of the animation(s), and finally
 • an A3 “concept board”, mounted or unmounted, that shows the develop-
 ment of your ideas.

More specific details about the time and place of the submission will be made
available later.

If the icon, “New Zealand”, was three dimensional it’s way of decomposing
might be to “unwrap” as if it were a box being opened out flat. But should
each of the new sub-icons be three dimensional? If so then what is to prevent
the user becoming hopelessly lost? What conventions should be adopted for
the icons – how many levels of decomposition can the user be expected to
keep track of. How can a user be certain that an icon has no further sub-levels
and what visual cues should be provided to enable a user back-track to a
previous level? After all the icons only represent the information, they are not
the information themselves.

Projects D•6

Design Brief

