
This section explores the ways that objects are defined in a virtual world.
Because our 3D worlds are described by hand written RIB files they will be
relatively simple. However, this is not a disadvantage because it will focus
attention on imparting as much visual interest through the use of careful
shading techniques and sensitive lighting, rather than gratutious complexity
obtained all too easily by the use of an interactive modelling system. Before
embarking upon the intricacies of lighting and shading some competence
must be gained with modelling. This section is designed to provide you with
these skills.

“Shaping Up” takes an in-depth look at two types of surfaces commonly used
to construct virtual models, namely, quadrics and polygons. Sophisticated
modellers also use surfaces based on curves called splines. If you have used
an illustration program such as Adobe Illustrator or Aldus FreeHand you
would have employed 2D splines to create curves. However, 3D splines are an
advanced topic of study and will not be addressed in this course.

Particular use will be made of the library of shapes, or primitives as they are
sometimes called, that are built into RenderMan. These pre-defined surfaces
are based upon mathematical expressions called quadratic equations, hence
their general name of quadric surfaces. There are seven surfaces in the library
and they are illustrated on the next two pages. Each quadric has its own set of
parameters that allow its form to be accurately specified. The meaning of these
parameters and examples of their use are given. In addition to being described
by an equation they are also surfaces of revolution. That is, they are formed by
spinning a line or curve around a central axis. Most modelling programs offer
these primitives because it is easy to assemble them into composite models.
Unlike many renderers RenderMan does not approximate quadrics in any
way and so renders them with smooth silhouettes.

The other type of surface that will be used is a polygon - a flat shape enclosed
by straight edges. Traditionally, polygons have been very important in 3D
computer graphics because of the ease with which they can be

 • internally represented by modellers and renderers,
 • assembled into a skin or mesh that approximates a desired form, and
 • rendered in a variety of ways to give the illusion of smoothness.

The straight edges of a polygon are defined by a sequence of 3D vertices each
of which is specified by three numbers – its x, y and z coordinates. Since even
simple polygon meshes can consist of dozens of polygons – each consisting of
at least three vertices (ie. triangles), it will only be feasible for us to describe
very simple surfaces.

Shaping Up – library objects and polygons

Overview

Shaping Up 5•1

Quadrics

Polygons

z

y

x

theta max

zmax

zmin

radius

RenderMan’s Library of Quadric Surfaces

z

y

x

z

y

x

theta max

height

radius

z

y

x

theta max

zmax

zmin

radius

height

radius

theta max

Disk 0.5 1.0 300 (example)

Cone 1.75 1.0 270

Sphere 1.0 -0.5 0.8 270

Cylinder 1.0 -0.5 1.0 300

Cone height radius thetamax

Cylinder radius zmin zmax thetamax

Sphere radius zmin zmax thetamax

Disk height radius thetamax (syntax)

Shaping Up 5•2

Shaping Up 5•3

y

zmax

zmin

z

y

x

theta max
point1

point2

z

y

x

theta max

major rad

min rad

phi min

phi max

x

z

theta max

RenderMan’s Library of Quadric Surfaces - continued

Torus 1.0 0.3 90 320 300

Paraboloid 1.0 0.15 1.2 300

Hyperboloid -0.3 1.0 -1.0 0.7 0.7 1.0 300

Torus major rad min rad phimin phimax thetamax

Paraboloid radius zmin zmax thetamax

Hyperboloid point1 point2 thetamax

radius

RIB

Shaping Up 5•4

Example 1 - don’t forget the inside!

#better goblet.RIB
#adding an inside surface
Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 40 "from" [4 2 4]
 Translate 0 0 5
 Rotate -120 1 0 0

 Surface "plastic"
 Color 1.0 0.9 0.3 #gold
 Cylinder 1 0 1.5 360 #container
 Disk 0 1 360 #base of the container
 Cylinder 0.25 -1.5 0 360 #stem
 Disk -1.5 1 360 #base of the goblet

 Translate 0 0 1.5 #move the origin to the top of the goblet
 Sphere 1 -1 0 360 #hemi-spherical inside surface
WorldEnd

This example introduces the first of the library shapes – a sphere. It also uses
two new RIB statements, LightSource and Surface. 3D computer graphics
has developed a rich set of lighting and surface texturing techniques that can
dramatically alter the appearance of an object. Although the concepts are
dealt with in detail in later sections, light sources and material attributes can
still be used effectively, even without elaborate explanations, to add realism
to a model.

With the exception of those lines marked in italics, this file is the same as the
final example of the previous section. At the end of the scene description the
origin is moved to the top of the goblet and the lower half of a sphere is
placed within the container by the RIB command,

 Sphere radius zmin zmax thetamax

A (point) light source is oriented to high-light the curved surfaces of the
goblet. The harshness of the lighting can be reduced by inserting this line,

 LightSource "ambientlight" 2 "intensity" 0.2

immediately after the first light source statement. The RIB command Surface,
followed by the name of a material in the RenderMan library acts much like
Color inthat all subsequent objects acquire the chosen characteristics.
Although more will be said about materials and surface textures, you may
like to experiment by substituting the parameter “plastic” for any one of
those shown in the list given opposite. Later you will be shown how to
control the characteristics of each material.

carpet
cloth

cmarble
constant
finemetal

Matte
metal

paintedplastic
plastic

rmarble
rsmetal

shinymetal
spatter

stone
wood

Shaping Up 5•5

Placing objects in the world

Cylinder 1 0 1.5 360

RIB

The actions of some of the RIB statements in the first example are illustrated
below. In each case the position of the x–y plane is indicated by a grid. The
surface being created is shown in the heavier line weight and the parameter(s)
responsible for positioning the surface in the z direction are shown in bold.

Disk 0 1 360

Cylinder 0.25 -1.5 0 360

Disk -1.5 1 360

Translate 0 0 1.5
Sphere 1 -1 0 360

Shaping Up 5•6

Example 2 - adding a rim and moving the camera

#goblet with rim.RIB
#adding a rim
Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 0 5
Rotate -120 1 0 0

WorldBegin
 LightSource "pointlight" 1 "intensity" 50 "from" [4 2 4]
 LightSource "ambientlight" 2 "intensity" 0.2

 Surface "plastic"
 Color 1.0 0.8 0.3 #gold
 Cylinder 1 0 1.5 360 #container
 Disk 0 1 360 #base of the container
 Cylinder 0.25 -1.5 0 360 #stem
 Disk -1.5 1 360 #base of the goblet

 Translate 0 0 1.5 #move the origin to the top of the goblet
 Cylinder 0.9 -1.4 0 360
 Disk -1.4 0.9 360
 Torus 0.95 0.05 0 180 360
WorldEnd

Although this example demonstrates the use of a torus, its main feature is the
way the transformations,

 Translate 0 0 5
 Rotate -120 1 0 0

that were previously used to rotate and move the goblet within the world
space are now effecting the whole world. Remember, all RIB statements prior
to WorldBegin refer to the way the world is oriented with respect to the
camera. Because it makes more sense to change the camera–world
relationship, as shown by the illustration on the next page, it will no longer be
necessary to rotate and move individual objects to obtain a better view of
them.

After a cylindrical liner and a flat base have been added to the inside of the
goblet a rounded rim is created with the Torus statement,

 Torus major rad min rad phimin phimax thetamax

Try to add another disk to the base of the goblet and provide it with either a

RIB

x

y

z

y x

z

Shaping Up 5•7

Display "goblet" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

RIB

display the graphic in a window titled
"goblet", 200 by 150 pixels in size,
use a camera with a 40 degree field of
vision and include rgb colour data

initially the origins of the camera
and the world coincide

x

y

z

y

x

z

rotate the world -120 degrees
around the x axis

move the world 5 units along the z
axis of the camera

since transformations occur in
reverse order the rotation is followed
by the translation

x

y

z
y x

z

Translate 0 0 5
Rotate -120 1 0 0

"freeze" the camera - now only use
the world coordinates

WorldBegin
 (assemble the goblet)

x

y

z y
x

z

WorldEnd scene description complete

Positioning the world relative to the camera

#coffee mug.RIB
#modifying the goblet
Display "mug" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 -0.5 5
Rotate -120 1 0 0
Rotate 45 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 50 "from" [4 4 4]
 LightSource "ambientlight" 2 "intensity" 0.25

 Surface "plastic"
 Color 0 0 1 #fully saturated blue
 Cylinder 1 0 1.5 360 #mug
 Disk 0 1 360 #base of the mug
 Translate 0 0 1.5 #move the origin to the top
 Cylinder 0.9 -1.4 0 360 #lining of the mug
 Disk -1.4 0.9 360 # bottom of the mug
 Torus 0.95 0.05 0 180 360 #mug rim

 Translate 0 1 -0.75 #move the origin to the back, and lower it half way down the mug
 Rotate 90 0 1 0 #rotate the origin so that the handle will be vertical
 Torus 0.6 0.1 0 360 180 #create a handle
WorldEnd

In this example some minor alterations to the scene have changed the goblet
into a coffee mug. The statements relating to the stem and base have been
removed and those shown in bold have been added or altered. However, the
most important point to notice about this file is the way the world is rotated 45
degrees clockwise about the z axis before it is tipped back 120 degrees. In all
the previous examples the camera was vertically aligned with the y axis of the
world. If you place a comment in front of the camera’s second rotation you
will immediately see the effect it has on the view. In addition, the mug has
been ‘centred’ by moving the world 0.5 units down the y axis of the camera.

Introduce a Scale statement to widen the handle as shown. The mug does not
look tall enough – increase its height to 1.9 units.

RIB

Example 3 - anyone for coffee?

Shaping Up 5•8

Cylinder 1 0 1.5 360 Disk 0 1 360

y y

y

y
y

y

x x

x
x

x

x

Translate 0 0 1.5
Cylinder 0.9 -1.4 0 360

Disk -1.4 0.9 360

Torus 0.95 0.05 0 180 360 Translate 0 1 -0.75
Rotate 90 0 1 0
Torus 0.6 0.1 0 360 360

The actions of the RIB statements used in the construction of the coffee mug,
example 3, are illustrated below. Unless otherwise indicated, the z axis is
pointing up. The surface being created is shown in the heavier line weight and
the parameter(s) responsible for positioning the suface in the z direction are
shown in bold.

In the last diagram the handle has been widened by applying a scaling factor
to the x coordinate. It is left as an exercise for you to determine where in the
script the “Scale 2 1 1” command should be inserted.

z

y

x

z

Shaping Up 5•9

3

5

7

1

4

2

6

Scale 2 1 1

Question: why is the scaling being applied
to the x axis when in this diagram it appears
as if the z axis requires “stretching”?

Shaping Up 5•10

#saucer.RIB
#some tricky scaling
Display "saucer" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

Translate 0 0 7
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 45 "from" [2 -3 4]
 LightSource "ambientlight" 2 "intensity" 0.15

 Surface "plastic"
 Color 0.5 0.5 1 #pale blue

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
WorldEnd

The purpose of this example is to show the effect of using scaling and trans-
lation, as well as the importance of applying these transformations in the
correct order. Ignoring the transformations for a moment, the combination of
the two spheres and the torus simply produces a hemi-spherical “cup”, 0.1
units in thickness, with a rounded rim.

The effect of the Scale statement is to stretch the “cup” into a saucer-like
object, refer to the illustration on the next page. The translation is optional in
that it does not change the form of the saucer, only its position. However, it
makes sense to lift the saucer by an amount equal to its radius so that it ‘sits’
on the x–y plane, hence the translation of 0.5 units in the z direction.

The widened rim of the saucer is due to the thickness of the basic “cup” being
exaggerated by the scaling factor–like stretching a sheet of rubber. By adjust-
ing the diameter of the inner sphere, and making the necessary changes to the
parameters of the torus, a wide variety of rims can be created.

The basic “cup” can also be stretched vertically into an object reminiscent of
an egg cup–see the next page. To create this object, x and y have been scaled
by 1, therefore they remain unchanged, while the height in the z direction has
been increased by 200%. To compensate for the scaling, the translation has
been increased from 0.5 to 1 unit ie. 2 x 0.5 = 1.

As an exercise, create an egg by scaling a sphere, assign it an appropriate
colour and position it in the egg cup.

RIB

Example 4 - the universal saucer

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

no translation

Shaping Up 5•11

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

The effects of scaling and translation

no scaling or translation

both scaling and translation applied

 Translate 0 0 1
 Scale 1 1 2

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

y

y

x

x

y

x

y

x

now its an egg cup!

For reference the original x–y plane BEFORE the transformations were applied
are shown in each example.

Shaping Up 5•12

#eggcup with base.RIB
#copying and pasting with instancing
Display "eggcup" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -.5 5
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 25 "from" [2 -3 4]
 LightSource "ambientlight" 2 "intensity" 0.25

 #Egg cup top
 Color .55 .17 .11 #dark brown
 Surface "wood"
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg cup base
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

RIB

Example 5 virtually “green”–reusable geometry

The previous example illustrated an important point about 3D models; by
making a few minor changes, to scaling for example, their geometry can form
the basis of a variety of secondary models. A similiar principle can be applied
within a single scene description. This example shows how several surfaces
can be collected together into a single retained object, and conveniently reused,
or instanced, many times. In the context of a drawing program this is like mak-
ing a group, then copying and pasting it repeatedly within an illustration.

The intention to make an object from a collection of surfaces is indicated to the
renderer by ObjectBegin/ObjectEnd. The number following ObjectBegin
indentifies, or tags the collection for later use by a statement that places the
object in the world, the number itself has no other significance,

 ObjectInstance tag

Unfortunately, transformations cannot be used between ObjectBegin and
ObjectEnd. Instancing allows the renderer to work more efficiently and also
helps to avoid writing tediously long RIB files. Pay particular attention to the
next two pages as they explain the transformations used in this scene.

The following line drawings show the effect of applying the transformations
used in example 5. At each stage, the coordinate system is represented by a
one unit grid, subdivided into quarters. To fully understand the action of
each group of transformations, remember they are applied,
 • in reverse sequence, and
 • with reference to the current coordinate system–shown as heavier lines.

The ‘new’ coordinate system only becomes current when an object is created.

untransformed Scale 1 1 2 Translate 0 0 1 ObjectInstance 1

Shaping Up 5•13

Rotate 180 1 0 0 Scale 1 1 0.25 Translate 0 0 -0.5 ObjectInstance 1

Translate 0 0 1
Scale 1 1 2
ObjectInstance 1

RIB (fragment)

Translate 0 0 -0.5
Scale 1 1 0.25
Rotate 180 1 0 0
ObjectInstance 1

RIB (fragment)

Visualising example 5

In the last example, the base of the egg cup was positioned and placed in the
scene by a scaling followed by a translation.

The same effect can also be achieved by placing the translation before the
scaling. However, simply reversing the two statements will not work. As the
drawing below shows, the translation must be altered. In general it is better to
perform a scaling BEFORE a translation, as shown on the previous page.

Shaping Up 5•14

Rotate 180 1 0 0 Scale 1 1 0.25 Translate 0 0 -2 ObjectInstance 1

-1

-2

Visualising example 5 – continued

RIB (fragment)

 #Egg cup base
 Scale 1 1 0.25
 Translate 0 0 -2
 Rotate 180 1 0 0
 ObjectInstance 1

Shaping Up 5•15

#egg and cup.RIB
#playing with materials

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 #Table cloth
 Color 0.87 0.71 0.51
 Surface "carpet" "Kd" 1 "nap" 0.5 "scuff" 0.5
 Disk 0 20 360

 #Top
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

Example 6 – playing with materials

RIB

With the exception of a sphere that has been added to model an egg, this
example is essentially the same as the previous scene. Where it is different,
however, is not so much in the area of “shape” as “shading”. Although the
first example in this section experimented with various materials, this
example exploits the way most shaders assigned with the Surface statement
can have their properties ‘tuned’ by a number of parameters. Each parameter
has a default value that can be either accepted, which is exactly what

happened in example 1, or reset as shown. Three surface shaders are used in
this example to give the effect of a “carpet”, “wood” and “spatter”. Their full
specifications, as documented by PIXAR, appear on the next three pages.
Although the details of surface shading will be dealt with in another section,
the descriptions of each of the materials used here should give you enough
information to undertake your own experiments. Most of the parameters use
values that range from 0 to 1; the exceptions, at least for the materials used in
this example, are

 wood "grain"
 carpet "nap"
 spatter "sizes"

Experiment with some or all the parameters in order to appreciate the control
that each provides over the appearance of a surface. In the absence of pre-
computed images this is a “trial and error” process. Three techniques can be
used to speed up rendering

 • use a higher ShadingRate, say 20, and optionally use
 • ShadingInterpolation “smooth”, to reduce the blotchiness of the image,
 • comment-out any surfaces that are not currently being adjusted.

ShadingRate is like a quality control adjuster; low values of around 1 or 2
give excellent results while higher values like 20 or more provide “rough and
ready” snapshots. A high shading rate simply tells the renderer not to cal-
culate the colour value for every pixel but to sample the pixels at whatever
rate has been set. The closest comparison to ‘real world’ photography is
choosing a high speed film with a coarse grain emulsion. Unfortunately, high
shading rates generate very pixelated images, see opposite. To reduce these
artefacts,

 ShadingInterpolation "smooth"

can be used to tell the renderer to average-out, or interpolate, the pixels
between the samples, otherwise it simply uses a constant colour. The state-
ment can be inserted immediately after ShadingRate. Of course you may
wish to take advantage of these image “defects” to achieve a particular
illustrative effect, in which case resetting ShadingInterpolation is optional. By
default its set to "constant", hence the blocks of flat colour.

Bearing in mind a PAL resolution video image constists of 442,368 pixels, the
careful use of these statements can have a very significant effect on the speed
of rendering.

Shaping Up 5•16

Shaping Up 5•17

"wood" "Ka" "Ks" "Kd" "roughness" "specularcolor" "grain" "swirl"
"swirlfreq" "c0" "c1" "darkcolor"

"Ka" 1 "Ks" 0.4 "Kd" 0.6 "roughness" 0.2
"grain" 5 "swirl" 0.25 "swirlfreq" 1
"specularcolor" [1 1 1]
"darkcolor" [dependent on the surface colour]
"c0" [0 0 0] "c1" [0 0 1]

This shader creates a realistic-looking wood. The frequency of the wood grain
can be changed with the grain parameter. The relative amount or amplitude of
the turbuent swirl in the grain is controlled by the swirl paramater, and swir-
freq controls the frequency of this turbulence. Low values of swirl produce
more uniform looking wood, while low values of swirlfreq make the wood
appear to be more knotty. Obviously these two parameters interact to a large
extent. You should be careful not to set swirl too high or swirlfreq too low or
the wood will become a jumbled mess.

The wood is simulated by creating a grain that is essentially composed of
differently coloured concentric “cylinders” around a central axis defined by the
two points c0 and c1. This axis is the z axis by default. Note that the orientat-
ion of this axis can be varied either by changing these two parameters or by
doing some transformations between the call to the shader and the definition
of the geometry. Either one of these approaches may make more intuitive sense
in different applications.

The colour of the wood will normally consist of bands of different intensities of
the surface colour. This is the most generally useful way of invoking the
shader. However, for special appearances this can be changed by changing the
darkcolor parameter, which controls the colour of the dark grain of the wood.
The different intensity levels are actually levels of mixing between this colour
and the surface colour, so setting the surface colour to red and darkcolor to
white will produce red wood with white grain and various shades in between.

The parameters Ka, Ks and Kd have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

Name

Defaults

Description

Bugs

Surface Shaders

Shaping Up 5•18

"carpet" "Ka" "Kd" "scuff" "nap"

"Ka" 0.1 "Kd" 0.6 "scuff" 1 "nap" 5 "swirl" 1

This shader produces a carpeted surface, complete with scuff-marks. The scuff
parameter controls the “amount of scuff”, or the relative frequency of intensity
variations. Higher values produce more frequent scuffing. nap describes the
“shagginess” of the carpet. Higher values make a more coarse-looking carpet.

The carpet shader makes a reasonable stab at anti-aliasing, so the actual grain
of the carpet fades away with distance.

There are no specular reflections from real carpet (at least on a macroscopic
scale), so the only lighting parameters are Ka and Kd, which have the usual
meanings of ambient and diffuse reflective intensities, respectively.

The way anti-aliasing is performed can cause linear artifacts in some cases.

Name

Defaults

Description

Bugs

Surface Shaders continued

"spatter" "Ka" "Ks" "Kd" "roughness" "specularcolor" "basecolor"
"spattercolor" "specksize" "sizes"

"Ka" 1 "Ks" 0.7 "Kd" 0.5 "roughness" 0.2
"specularcolor" [1 1 1] "basecolor" [0.1 0.1 0.5] "spattercolor" [1 1 1]
"specksize" 0.01 "sizes" 5

This shader makes objects look like blue camp cookware with white paint
spatters. Actually, both the blue basecolor and the white spattercolor can be
changed if you desire.

The parameter specksize controls the size of the paint specks as you would
expect. However, there are a range of sizes of paint specks controlled by the
parameter sizes. Lower (integer) values produce smaller and more uniform
specks. Higher values produce some larger blotches and specks of many
different sizes.

The parameters Ka, Ks and Kd, have the usual meanings of ambient, specular
and diffuse reflective intensities, respectively. roughness and specularcolor
control the sharpness and colour of the specular highlight.

This shader can have problems with aliasing.

Name

Defaults

Description

Bugs

Surface Shaders continued

Shaping Up 5•19

Shaping Up 5•20

RIB

Example 7a - making a composition the wrong way!

In this example the description of the saucer in example 4, shown in bold, has
been copied and pasted into the part of the previous RIB file that described
the so-called table cloth. However, as the illustration on the next page shows,
something very strange has happened to the egg cup and egg.

#egg and cup.RIB
#playing with materials

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 Surface "plastic"
 Color 0.5 0.5 1 #pale blue
 Translate 0 0 0.5
 Scale 4.4 4.4 1

 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360

 #Top
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
WorldEnd

Shaping Up 5•21

Because the saucer is created with a scaled coordinate system all the surfaces
defined after this transformation are likewise effected, hence the Ostrich egg
effect shown on the left, rather than the desired composition shown on the
right!

Clearly objects in a scene need to have their individual coordinate systems, or
object space, and their surface attributes kept, in a sense, private from each
other. In a RIB file there are two ways in which this can be achieved. In the
following example the two principle objects, the saucer and the egg cup
holding an egg, are blocked together between the statements AttributeBegin/
AttributeEnd; these instruct RenderMan to localise (keep private) the
geometry AND the surface attributes of each object. If only the geometry
needs to be kept private, and there are good reasons why this is sometimes
necessary, then the TransformBegin/TransformEnd statements are used
instead.

To draw an analogy, if WorldBegin/WorldEnd define the beginning and end
of an entire theatrical play, then the AttributeBegin/AttributeEnd behave like
markers that separate one “scene” from another. Surfaces and polygons fulfill
the role of “actors” with each, either separately or in collections, being
assigned “costumes” represented by the attributes of Color and Surface.

In the improved RIB script on the following page, ObjectInstance has been
used to insert the saucer instead of declaring three separate surfaces. None-
theless, the composition still displays a modelling error–notice how the egg
cup partially penetrates the saucer. However, because they are grouped
together with the AttributeBegin/AttributeEnd statements, the egg cup and
egg can be raised by a single transformation (shown in bold print on the next
page). Because of the curvature of the saucer a similiar error accurs if the egg
cup is moved toward the rim. But even so, it is sometimes acceptable to allow
objects to interpenetrate as long as the error is not too noticable.

The two methods of grouping objects together using AttributeBegin/End and
TransformBegin/End are summarised on page 24.

Shaping Up 5•22

#egg cup and saucer.RIB
#combining objects the correct way!

Display "eggncup.tiff" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 200 150 1
ShadingRate 5

ObjectBegin 1
 Sphere 0.5 -0.5 0 360
 Sphere 0.4 -0.4 0 360
 Torus 0.45 0.05 0 360 360
ObjectEnd

Translate 0 -0.7 4
Rotate -120 1 0 0
Rotate 60 0 0 1

WorldBegin
 LightSource "pointlight" 1 "intensity" 20 "from" [2 -3 4]
 LightSource "pointlight" 1 "intensity" 8 "from" [2 3 2]
 LightSource "ambientlight" 2 "intensity" 0.15

 AttributeBegin #Saucer
 Surface "plastic"
 Color .5 .5 1
 Translate 0 0 0.5
 Scale 4.4 4.4 1
 ObjectInstance 1
 AttributeEnd

 Translate 0 0 0.1 #raise the egg cup and egg

 AttributeBegin #Egg cup and egg
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 1.0
 Scale 1 1 2
 ObjectInstance 1

 #Egg
 Surface "spatter" "basecolor" [0.87 0.66 0.6] "sizes" 3 "spattercolor" [0.55 0.17 0.11]
 "Ks" 0.0 "Kd" 1
 Sphere 0.4 -0.4 0.4 360

 #Base
 Color 0.55 0.17 0.11
 Surface "wood" "darkcolor" [0 0 0] "swirl" 0.25 "grain" 15 "swirlfreq" 1.5
 Translate 0 0 -0.5
 Scale 1 1 0.25
 Rotate 180 1 0 0
 ObjectInstance 1
 AttributeEnd
WorldEnd

RIB

Example 7b - making a composition the correct way

Shaping Up 5•23

WorldBegin
 #lighting setup the same as before…

 Color 0.87 0.71 0.51
 Surface "carpet" "Kd" 0.8 "nap" 0.8 "scuff" 0.8
 TransformBegin #mug
 Cylinder 1 0 1.5 360
 Disk 0 1 360
 Translate 0 0 1.5
 Cylinder 0.9 -1.4 0 360
 Disk -1.4 0.9 360
 Torus 0.95 0.05 0 180 360

 #mug handle
 Scale 2 1 1
 Translate 0 1 -0.75
 Rotate 90 0 1 0
 Torus 0.6 0.1 0 360 180
 TransformEnd

 Translate 0 0 -0.15 #lower the saucer

 Color .65 .27 .21
 Surface "wood" "darkcolor" [0 0 0] "swirl" .25 "grain" 15 "swirlfreq" 1.5
 TransformBegin #Saucer
 Translate 0 0 0.5
 Scale 4.4 4.4 1
 ObjectInstance 1
 TransformEnd
WorldEnd

Example 7c - another way of grouping objects

RIB fragment

This example is a combination of “coffee mug.RIB” and “saucer.RIB”. It shows
how the surfaces and transformations that form an object can be grouped
together using TransformBegin/TransformEnd. Like the groups formed by
AttributeBegin/AttributeEnd in the previous example, these new statements
keep the transformations for each object private, but they do so without
localizing colour and surface attributes. The image on the left shows what
happens if the transformations previously applied to the handle are not kept
“private”. The image on the right is the result of the RIB given above.

Independent objects each with
their own shape, position AND
shading attributes.

Shaping Up 5•24

Summary of methods relating to the grouping of objects

WorldBegin
 AttributeBegin
 (shape, transformation and shading information
 relating to the egg and egg cup)

 AttributeEnd

 AttributeBegin
 (shape, transformation and shading information
 relating to the saucer)

 AttributeEnd
WorldEnd

WorldBegin
 Color 1 1 0 #Yellow
 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd

 TransformBegin
 (only shape and transformation
 information relating to a saucer)
 TransformEnd
WorldEnd

Independent objects each with
their own shape and position, BUT
all sharing a common shading
attribute which in this example
has been set to the colour yellow.

AttributeBegin
AttributeEnd

TransformBegin
TransformEnd

