
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada.
2014 Copyright held by the Owner/Author.
ACM 978-1-4503-2962-0/14/08

COURSE NOTES
SIGGRAPH 2014, VANCOUVER, CANADA

CHANGES IN THE WORKFLOW

The transition

to raytracing at

Sony Pictures Imageworks

PRESENTED BY:

Jesse Andrewartha
Sony Pictures Imageworks

Contents

1 Introduction 2

2 The Transition 2

3 Early Days 8

4 The State of the Art 10
4.1 Growing complexity . 10
4.2 Talent and education . 11

5 The Workflow 12
5.1 Resources and I/O . 12
5.2 Modeling Considerations . 13
5.3 Look Development and Lighting 14
5.4 Dailies and Rounds . 16

6 Conclusion 16

7 Acknowledgments 17

1

1 Introduction

In 2006 Sony Pictures Imageworks (SPI) released Monster House, the first film
from the studio to utilize a raytracing-only strategy with the Arnold renderer.
The success of the rendering in the film spurred development and our raytracer,
SPI Arnold, co-developed with Solid Angle SL, quickly became the standard
renderer in the facility. The focus of this presentation is the fundamental change
from the REYES paradigm to a raytracing toolset with the broad implications
of this shift on the production environment.

Key to understanding the shift SPI experienced in practices, pipeline, tools
and artistic approach is to understand the difference in how our rendering
pipeline acquired a pixel value before and after the transition. The change
is a complete shift in rendering philosophy; we move the work of illumination
from the artist to the machine. This core shift affects everything from hardware
considerations and disk space to communication with clients.

2 The Transition

In 2014, the use of raytracers is widespread throughout the industry. But when
SPI first investigated the use of pure raytracing in 2004, it was the wild west.
In fact, the idea to switch to a pure raytracing environment wasn not a foregone
conclusion; in seeking a “claymation” style look for Monster House, SPI was
charged with the task of coming up with the best approach. At the time,
our pipeline was completely REYES, but a new renderer was being tested; a
raytracer called ARNOLD.

Figure 1: An early test of raytracing in Monster House.

Image courtesy Columbia Pictures ©2006 Columbia Pictures Industries, Inc. All
rights reserved.

One of our earliest tests, shown in Figure 1, left supervisors in no doubt
about our direction. Lit with only three lights, it gave us a clear glimpse to the

2

future. In 2004 Sony Pictures Imageworks licensed the source code to Arnold
and entered into a partnership with Solid Angle SL founder, Marcos Fajardo,
to co-develop it and adopt Arnold as Imageworks’ main renderer. The new
renderer was foundationally different: it was a path tracer.

The shift represented a whole new pipeline. Technically, the obstacles were
daunting; we did not have any pipeline in place, there was no hair model im-
plemented, the motion blur slowed performance so much as to be unusable in
production. Even then, images had to be rendered 1K to get meaningful it-
erations in lighting. But even with such a limited palette, the imagery was
compelling. The difference in how our established pipeline with the REYES
renderer and Arnold evaluated a pixel value had implications for our entire
workflow. (Figure 2) and (Figure 3) show the basic differences in the two ap-
proaches.

Moving forward meant implementing the new renderer and adjusting to a
completely new set of changes:

Everything was brute force:
In the new raytracing architecture, everything was brute force, no tricks. This
meant that for features such as motion blur, where we were used to ‘smearing’
objects, we were now sampling temporally between shutter open and shutter
close. Technically it allowed for things that a REYES renderer could not do,
like motion blur on shader functions that change the look of the surface over
time or animating camera parameters. It was also more accurate. But it was
also slower and had more artefacts which needed optimization.

Shading sampling and antialiasing were one and the same:
Shading Rate was no longer applicable. In REYES, we were used to having
separate control over the shading rate and the pixel samples. In Arnold, these
were one and the same: AA_samples, which controlled both. This meant there
was a lingering belief that Arnold was inherently ‘softer’ when rendering textures
and shader detail. In fact, the change simply moved controls for textures to new
parameters but there was a learning curve with this change that took years to
overcome.

There was no longer any caching:
Shadowmaps, brickmaps, point clouds were no longer written out. It’s impor-
tant to recognize that we have at various times used these tools, but only until
a pure raytracing method became available, at which time they were promptly
and irrevocably deprecated. We did experiment with using shadowmaps on
Monster House and Cloudy With A Chance Of Meatballs, but they were created
and stored in memory, used and then discarded, so they were never persistent.
While there were some initial performance improvements, the extra artist work
to tweak and manipulate them was more expensive and their use was discontin-
ued soon after. Other optimizations proved far more valuable than any saving
realized via shadowmaps.

3

Figure 2: Computing the color of a pixel in a REYES renderer. Images courtesy Larry
Gritz.

(a) Start with the input geometry (b) The input geometry, the gprim, is simpli-
fied

(c) The smaller gprim is subdivided to mi-
cropolygons (governed by shading rate)

(d) The micropolygon surface is shaded

(e) Surface is displaced (f) Camera position and view is calculated

(g) Pixel sampling samples the
shaded/displaced surface

(h) The pixel samples are filtered and color
value given to the pixel

No longer having to create and manage supporting map types was an enor-
mous change. This had two effects:
(a) On one hand, we no longer had to reserve and manage these maps, which
had a huge impact on I/O and resources. There was no longer any risk of losing
files in a mistaken backup, there was no longer any problem with linking to the

4

Figure 3: Computing the color of a pixel in a raytracer. Images courtesy Larry Gritz.

(a) Start with the camera & create sampling
distribution

(b) Rays are fired along the pixel sample
points

(c) Intersection with the closest mesh calls the
surface shader

(d) Lights are sampled from the intersection
point

(e) Reflections and refractions are calculated
with glossy/reflection rays

(f) Global Illumination is calculated with sec-
ondary rays

(g) All samples within a pixel integrate the
color result of all surface, lighting and GI con-
tributions

(h) The integrated samples are filtered and
color value given to the pixel

wrong file version and no need to tweak and manage those files in the scene.
(b) On the flipside, it meant that everytime a shot had to be rendered, we now
faced a complete re-render. Ultimately, in terms of consistency and manage-
ment, the benefits of removing these passes meant that the downside of having

5

to re-render was seen as an acceptable loss.

Figure 4: The impact of multithreading on render time (red) and machine utilization (blue)
Note that machine utilization decreases with more cores; during single threaded processes the
balance of cores are idle. The more cores, the more core-time that is spend idle and the lower
the utilization.

1 2 3 4 5 6 7 8
0

100

200

300

threads

re
n
d
er

ti
m

e(
m

in
s)

50

60

70

80

90

100

m
a
ch

in
eu

ti
li
z
a
ti

on
(%

)
Tiling was gone:
When faced with a complex scene in our REYES pipeline, it was possible to
split it vertically or horizontally and render each “tile” on a different CPU.
This worked because each CPU only had to load the geometry behind each tile.
In a raytacing pipeline, this no longer worked because all geomtry had to be
loaded into memory regardless of its location in the scene. Fortunately, Arnold’s
multithreaded performance is excellent between one to eight cores, scaling nearly
8x on 8 cores, meaning that we can get high performance from just one machine
(Figure 4).

Micropolygons were no longer applicable:
The largest impact of this was in displacement and subdivision. Because shad-
ing occurs AFTER hiding, the raytracer must displace first via subdivision; as
a result, micropolygon displacement is not possible. Only subdivision iterations
can govern the appearance of displacement. This means that we are sometimes
forced to subdivide objects into tens of millions of triangles. Arnold has an
impressive capability to handle massive amounts of geometry, but it is still a
bottleneck. Interestingly, because Arnold was not micropolygonizing the mesh,
moving the cv’s one unit or a hundred units was basically the same cost, since
you already subdivided as much as you were going to prior to displacing. This

6

allows for “modeling with displacement”, something that was typically discour-
aged when working with a REYES renderer.

Acceleration structures were different:
One side effect of raytracing was that partitioning the meshes changes signifi-
cantly. In our earlier REYES architecture, we essentially had a Z-depth hider, in
which the foremost geometry was retained but anything not visible was dumped
from memory and furthermore, any back faces were discarded. We cannot do
this in a raytracer.

Figure 5: Acceleration using BVH trees

T2

T3

T4

T5

L1

L2

L3

L4

L5

L6

L7

L8

T1

(a) In a simple scene, the triangles are easy
to partition.

(b) In a complex scene, with many overlap-
ping triangles, the scene can become impossi-
ble to partition.

When a ray is fired into the scene, we must first determine where that ray
intersects geometry. This task is expensive. When Whitted presented his land-
mark paper in 1980, most of the time in his images involved ray intersections;
for complex scenes, the time spent on intersections between rays and objects
approached 95%! [2] Clearly, we need a method to make these computations
as efficient as possible. We use accelerations structures to optimize this pro-
cess. The concept of acceleration structures is to quickly determine whether a
ray can possibly hit a particular mesh in the scene in order to avoid expensive
ray/primitive intersection tests.

Arnold uses BVH acceleration structures based on the paper by Kajiya and
Kay.[1]. As illustrated in Figure 5, a scene is partitioned into a pyramid of
smaller and smaller bounding boxes, each time checking whether the ray in-
tersected any of the bounding boxes computed. In this way, whole sections of
geometry can be quickly skipped without performing a linear check of all the
primitives in a mesh or scene. Normally, this methodology can substantially
cut down on the number ray/primitive intersections performed, but there are
certain cases which can pose significant problems. Effects passes, such as par-
ticle systems or hair, can create conditions where all of a sudden, we have huge

7

numbers of triangles overlapping. In worst case scenarios, the intersections can
become so slow as to make the frame unrenderable, though these occurrances
are rare.

Ray tracer from ground up:
In the REYES architecture, any raytracing required calls to a separate ray
tracer and point clouds/support maps. This system is difficult to manage and
requires maintenance of two separate renderering pipelines, complicating the
task of maintenance for the software engineers. Furthermore, it retains the same
system of support maps and caching. This increases complexity and introduced
weaknesses. Adopting a ground-up raytracer, we are now maintaining only one
renderer. This frees the renderer from dependencies and having to maintain the
hooks into any parallel system. In this way, the system remains efficient and
fast and permits much more sweeping optimization and development.

Physically accurate, one pass, no tricks:
No biasing methods were required to achieve sophisticated lighting and no sup-
port passes were necessary. This significantly reduced resource management
and artist time in tweaking.

Complex lighting phenomena come standard:
In converting to the new pipeline, dozens of parameters were reduced to a few
parameters that are interdependent with other parameters and affect them ap-
propriately. This dramatically simplified the user experience. Initially, the
response was negative; artists were used to control over every aspect of the
lighting phenomena, but the benefit in consistency, complexity and sophistica-
tion in lighting lead to acceptance. The flipside is that this simplified system
also requires more planning from the look developer. It goes beyond simply
compositing a specular highlight and involves considerations of the properties
of the surface itself.

A whole new language had to be learned:
Finally, along with the change came a whole new language and a new way
of communication had to be developed around raytracing. Gone was shading
rate, shadowmaps, biasing, dso’s. We now had to contend with Camera rays,
Diffuse rays, Shadow rays, Glossy rays, Reflection rays, Refraction rays, Ray
depth. This new lexicon of raytracing had to be adopted and every artist had
to become fluent in it. This lead to a new training curriculum.

3 Early Days

The success of rendering Monster House spurred development, but the obstacles
were not simply technical, they were psychological. On one hand, there was the
change in the actual renderer which had proven itself on a full CG feature.

8

To those that had participated, the advantages were obvious. However, to
productions already on a tight schedule, it was risky. REYES renderers had the
full backing of decades of user experience; not only were the pipelines mature,
but also technicians and artists were readily available. Most CG supervisors
had risen through the ranks knowing how to get things done with the REYES
architecture and to move to an unkown system was a leap of faith few were
willing to take.

Between 2006 and 2007, several productions used Arnold for selected ele-
ments; films such as Beowulf used Arnold as a utility renderer. Don’t Mess
With The Zohan used Arnold for the “cat hacky-sack” scene (and was SPI’s
first use of hair in Arnold), G-Force used Arnold for it’s ability to handle the
massive geometric complexity of the“Clusterstorm” robot and Valkyrie for some
weaponry in battle sequences. But it was Eagle Eye was one of the first visual
effects films at SPI to take up Arnold as its primary renderer.

Figure 6: A digital set extension rendered in Arnold for Eagle Eye.

Image courtesy of DreamWorks Pictures ©2008 DreamWorks SKG. All rights re-
served.

By that time, motion blur had been vastly improved, rendering speed had
progressed such that 2K frames were possible within a regular dailies schedule
and the shading system had improved to where truly photorealistic rendering
was feasible. (Figure 6). By the time Alice in Wonderland and 2012 were
evaluating rendering options, there was a broader discussion at facility level on
SPI’s philosophy and future. After exeriencing a pure raytracing pipeline with
Cloudy With A Chance Of Meatballs, Rob Bredow, Imageworks’ CTO, made
clear the push for more photorealistic imagery out of the gate. The motivation
was three-fold:

Consistency across shots: When you are lighting with full raytracing,
you are relying less on shot specific lighting to achieve the look. With
careful look development, an environment can be lit and the template
shared for all artists within a given sequence with minimal relighting on
a per-shot basis.

9

Artist efficiency With no shadow maps, brick maps or point clouds
artists are free to light the scene and concentrate on the look, rather than
supporting passes. This effectively moves the work from the artist to the
computer.

Interface simplification: The standard model for REYES shaders up
until that time had been the ‘uber shader’; these models relied on artist
input for almost all aspect of the shading model. As a result, the UI to such
models often had over 350 separate parameters that had to be managed
and tweaked. By contrast, in our raytracer, renderer development moved
toward handling all ray decisions. This meant that control no longer rested
with the materials and simplified the interface; shaders in the current set
of materials have less than 50 parameters.

Until this time, SPI and Solid Angle SL had been working together on
Arnold. But with the development and implementation of Open Shading Lan-
guage into SPI’s version in 2010, the branches split. Because SPI’s development
of Arnold from that point forward occurred parallel but separately from Solid
Angle SL Arnold from that juncture is described as SPI’s Arnold. Alice in
Wonderland marked the first show that instituted SPI’s Arnold as the official
facility renderer; every show subsequent to Alice has used SPI’s Arnold without
a requisite “renderer bake-off” during pre-production.

The last of the pre-physical lights and shader-directed sampling have been
completely removed from the SPI Arnold source code; it is now all OSL with
closures, correct units and completely physicaly-based BSDFs and lights.

The year 2012 saw a slew of productions, including Men in Black 3, The
Amazing Spider-Man and Hotel Transylvania, all with SPI’s Arnold as the
primary renderer (Figure 7). With all the elements long since stable, 2013
and beyond have seen additional productions and releases of Oz the Great and
Powerful, The Smurfs 2, Cloudy With a Chance of Meatballs 2, The Edge of
Tomorrow and, of course, The Amazing Spider-Man 2.

4 The State of the Art

4.1 Growing complexity

In the years since, the sophistication of the imagery has grown by orders of
magnitude. When I wrote the first list of recommendations for rendering with
SPI’s Arnold in 2007, the maximum recommended number of rays per pixel
was 750. In The Amazing Spider-Man 2, 2000-3000 rays per pixel was not
uncommon. In terms of features, The Amazing Spider-Man 2 has not only
motion blur,but also geometry lights, skydome lights, fully participating hair
and volumes, ray-traced BSSRDF, particles and more!

When the facility committed to Arnold, there was a strong emphasis on
limited camera passes. It was considered ideal if the render was done in a single
pass; this was due to several factors, not limited to consistency and the expense

10

Figure 7: The timeline of SPI productions using Arnold and SPI Arnold since 2004, with
major renderer milestones. The three colors of the bars represent the shading systems in use:
Maya-to-Arnold (Green), C-shaders (yellow), physically-based C-shaders/transition (blue)
and finally, OSL (pink)

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

SP
I
ad

op
ts
 A

rn
ol
d

A
rn

ol
d
be

co
m
es
 S
P
I’s

 p
ri
m
ar
y
re
nd

er
er

SP
I
an

d
So

lid
 A

ng
le
 S
L’
s
br

an
ch

es
 d
iv
er
ge

Monster House

Cloudy With A Chance Of Meatballs

Eagle Eye

Arthur Christmas

The Smurfs

Alice In Wonderland

2012

Green Lantern

Men In Black3

The Amazing Spider-Man

Hotel Transylvania

Oz the Great and Powerful

The Smurfs 2

Cloudy With A Chance Of Meatballs 2

The Amazing Spiderman 2

Edge of Tomorrow

SP
I
A
rn

ol
d
co

nv
er
ts
 c
om

pl
et
el
y
to
 O

SL

SP
I
an

d
So

lid
 A

ng
le
 S
L’
s
br

an
ch

es
 d
iv
er
ge

SP
I
ad

op
ts
 A

rn
ol
d

A
rn

ol
d
be

co
m
es
 S
P
I’s

 p
ri
m
ar
y
re
nd

er
er

of multi-pass rendering at the time. Subsequent development provided AOVs
and the single-pass preference has unavoidably given way to multipass AOVs
which reduces the benefits to resource management. But we must also face the
reality that some flexibility is required.

4.2 Talent and education

In these days of compressed schedules and tight deadlines, artist education
becomes much more of a concern. Previously, there was a rotating pool of
technicians and artists all fluent in REYES renderers. In shifting to a ray-
traced paradigm, SPI was suddenly faced with educating artists on a totally
new pipeline.

On one hand, the idea in transforming to the new pipeline was to shorten the
training time. In line with the broader goals at SPI, the latest versions of our
rendering and shading pipeline present a much simplified interface where the
renderer only is in charge of sampling. Furthermore, the benefits in shifting the
effort of complex lighting to the core ideally reduces the artist’s job to lighting
with as little between them and the renderer as possible. The thinking was that
if a lookdev lead can set up a sequence and any render from that shot within

11

that sequence is 95% complete on the first try, there there is less emphasis
needed on training. In reality, however, not all sequence templates are perfectly
tuned, not all lookdev is efficient and in the haste to get images before the VFX
supervisor, corners are often cut.

This means that in fact education becomes paramount. But it is a double-
edged sword. The more time an artist spends in training, the more expensive
the hire becomes. Yet too little and the artist may not develop the strategies
to become efficient users; the struggle becomes a question of how much edu-
cation becomes necessary to become effective. At SPI, the training is ongoing
throughout the production. Initial training is augmented with weekly “lighting
tips” classes. Initial training is augmented throughout production with weekly
lighting tips classes. Furthermore, any scene that’s investigated and optimized
is written up as an example which is distributed to all lighters every show.

5 The Workflow

SPI’s Arnold represents a shift in the methods and approach taken with previous
renders at SPI. Unlike the REYES renderers used until our conversion, SPI’s
Arnold demands more effort in pipeline preparation and setup at the outset,
but once a pipeline is in place it represents a greater level of consistency and
throughput. SPI’s Arnold is less forgiving, spending time to solve problems is
always more expensive than anticipating issues before they become problems.
The key is to start off on the best footing possible and this extends from pre-
production to the correct lighting and compositing set up.

5.1 Resources and I/O

With our REYES pipeline, with the required support maps there was an em-
phasis on sheer disk space and the need for efficient diskspace management. A
decade ago the computing machinery itself was slower; fast renders with high
numbers of iterations relied on a REYES pipeline with more work on the part
of the artist and technical directors to manage the images and supporting map-
types. In our shift to pure raytracing, this relationship has reversed. We are
relying less on disk space and file management and more on the machines them-
selves. The change in rendering philosophy at the core raytracing, moving the
work from the artist to the machine, meant a fundamental shift in the role of
resources and I/O.

As computing hardware becomes cheaper and faster, more and more complex
lighting and scenes become easier to render on schedules and budgets required
in production pipelines. Complex lighting models and interactions in an efficient
raytracing pipeline relies on fast machines and many of them. This shift has
continued to evolve along with our raytracing pipeline. Everything was moving
to memory and the CPU; the work of lighting, all geometry, everything. Even
when we did experiment with caching with shadowmaps, they were created on
the fly and only ever existed in memory. All these factors meant that we need as

12

much RAM per machine as permissible. Intial renders in complex scenes have
been known to climb as high as 50GB of RAM before optimization. It should
be noted that while far from ideal, many of these renders did in fact succeed,
completing (though crawling) through the render farm.

5.2 Modeling Considerations

With a REYES architecture, it was generally the case that you could model
with a certain amount of impunity; not all geometry was held in memory and
displacement was micropolygon-based. This is not the case in a raytracing
paradigm: all geometry is held in memory until the conclusion of the render.
While the growth in CPU power and RAM have made massive datasets more
tenable, care has to be taken in the modeling phase to ensure efficient rendering.

Reduce geometric complexity wherever possible: Assets are often
modeled with deep levels of hierarchy; this is often to simplify look de-
velopment. This can have performance implications at render time and
generally a “flatter” hierarchy is recommended. Furthermore, combining
objects into single meshes wherever possible performs two tasks.

Level Of Detail models: Level of detail does not function in SPI’s
Arnold as it did in REYES. Even so, substitution of complex models in a
scene for simpler, pre-modeled versions at mid and far distances can make
a huge difference. Remember that SPI’s Arnold performs subdivision and
displacement based on object space, not by pixels on screenspace. Any
excessive iterations or displacement on mid to far meshes can be massively
inefficient. There is a potential downside: Level-Of-Detail (LOD) models
can lead to extra memory usage. Instead of one big mesh, we now have
a big mesh, a medium mesh, and a small mesh. To minimize any impact
on memory, it is important to ensure that the medium and small mesh
should be small enough to not come close in size to the large mesh. Also,
the differing LOD’s may present difficulties during instancing.

SPI’s Arnold can subdivide based on the pixels in screen-space (ie- “adap-
tive” subdivision) where we can subdivide until each quad is roughly X
pixels in size. This feature relies on a camera to provide the viewpoint and
the size of the final subdivided quads is set by specifying the parameter
“pixel error”. Care needs to be taken to limit camera movement, otherwise
mesh may move in and out of a size boundary, resulting in “popping”.

Hair: Hair is integral to the quality of our images and it is one of the
more complex primitives to shade and raytrace efficiently. As everything is
brute force/no tricks, we are often forced to try and sample what amounts
to very thin specular geometry. Add to that we are creating millions of
hairs with potentially hundreds of lights, low opacity, indirect diffuse and
all of a sudden our performance drops. But we can take steps to limit the
expense.

13

Can you reduce transparency of the hair and increase opacity?, Is the
hair too thin? Can it be widended? Do you have the leanest lighting rig
possible? Do you need to trace indirect diffuse between hairs?

Procedurals: Procedurals are another area where there was a change.
In the REYES world, procedurals were generally considered beneficial.
Storage was optimal and when rendering you could load them in lazily,
that is, only load them when necessary in the scene and then discard
them as they are rendered. But in a raytracer all procedurals need to be
loaded and retained. Depending on the packages used, you can also incur
additional overhead from the software that translates the procedurals to
the raytracer. In our own experience with SPI’s Arnold it was common for
half of all memory in an fx heavy scene to be solely due to such overhead.
It is therefore important to keep procedurals as lean as possible by limiting
user and arbitrary data attached to procedurals.

5.3 Look Development and Lighting

Look development and lighting had to alter quite considerably with the adoption
of a raytracer. We eschewed the use of support maps and moved the work of
lighting to the computer, but we need to remain vigilent about the implications
of look development and lighting choices. Excessive geometry (refer to “Mod-
eling Considerations” above), unnecessary use of opacity, subsurface scattering
and excessive numbers of lights all can mean a massive decrease in performance
and an increase in render time. We had to change the way we approached look
development; the process is more powerful but less forgiving, requiring a clear
idea of where an asset is being used, what the context of a given asset may be
and how to make surface choices based on that information.

When reviewing assets at the beginning of a production, it is easy to un-
derestimate the cost of individual meshes in a scene. Often, assets are created
with flexibility in mind. With productions in flux well into the schedule, it’s
often difficult to have an exact conception of a given assets’ final requirements.
But in most cases the propagation is predictable and expensive features can be
offset with cheaper and often close-matching alternatives.

For example, in The Amazing Spider-Man 2 we had finely modeled props
for New York City, but we had screws that were modeled with 900,000 traingles
each. In a REYES renderer we could deal with this level of geometry due to
hiding, but in a raytracer all of these traingles are kept in memory. Another
case is the power station in The Amazing Spider-Man 2 ; at look development,
towers were created in isolation. Individually, they rendered in a reasonable
time, despite having many geometry lights and high detail. However, the final
Power Station had hundreds of these towers. This created over one thousand
geometry lights and a low performance render. The shots involved required
considerable optimization.

Anticipate and manage ray costs: It’s important during the lookdev
phase to pay close attention to ray counts. Checking the performance

14

Figure 8: A comparison of the beauty pass, the cputime AOV and the raycount AOV. Note
there’s almost no difference between the two beauty renders (a) and (d), but in the cputime
and the raycount the expense of the lenses is clear. Adjusting refraction samples from 3 to 1
significantly reduces render cost.

(a) Original beauty render (refraction sam-
ples=3)

(b) optimized (refraction samples=1)

(c) cputime AOV (d) cputime AOV

(e) raycount AOV (f) raycount AOV

using metrics such as the raycount AOVs allow the artist to visually check
inefficiencies early on in the pipeline and rectify them. This can be a fine
line as sometimes renders can be economical on the ray count but the
shading is very compute intensive; the cputime AOV is another related
metric that allows the user to see where the renderer is taking the time and
together are very effective visual tools for evaluating efficiency (Figure 8).

Multi-resolution shader sets: Materials do and will become very com-
plex; this complexity only grows as our pipeline evolves. Unfortunately,
one by-product can be that huge amounts of compute cycles are consumed
by calculating these surfaces, when all we need is a simpler representation

15

to refine lighting, or for cases where objects are mid to far from camera
and most of the complex lighting cannot be perceived at distance. Cre-
ating multi-resolution shader sets that use simpler, non-layered materials
for testing that can then be substituted for full-shaders in the final renders
can significantly lighten the render and permit faster feedback on lighting
and faster, more optimized final renders in some cases.

5.4 Dailies and Rounds

Even daily schedules had to change. If we have moved the work of the render
to the machine, we are now dealing with more expensive renders. In an envi-
ronment where an artist is required to present dailies in the morning, prepare
rounds by the afternoon and then set off new render for the next day, more ex-
pensive renders may mean these daily milestones are missed. With our REYES
pipeline, the use of shadowmaps and other support maps often meant that s
small change in light color or position was of little consequce; a new version
could be rendered out without shadows and the same shadowmaps re-applied.
In our conversion to a raytracer, each re-render was a complete re-evaluation
of the scene and to manage the impact, we have had to develop new ways of
working with the requirements of dailies and rounds:

Rendering at low resolutions: Frames in SPI’s Arnold rendered at
different resolutions/samples do not alter the color or properties of the
image, they simply alter noise levels. This makes it possible to use lower
resolution renders to evaluated lighting in the initial iterations. Rendering
at higher resolutions with higher antialiasing settings can be performed
once lighting has reached a satisfactory point. This does require confidence
at the team level and an acknowledgement that noise will be resolved in
final renders.

Single frame evaluation: Rendering single frames during the day for
inital lookdev followed by turntables overnight/weekends can dramatically
improve render turnaround. As a shot progresses and higher levels of
optimization can be done, more and more frames can be rendered.

6 Conclusion

Originally tested to achieve a realistic “claymation” look, the advantages of ray-
tracing at a production level were quickly realized. Adoption facility wide fol-
lowed and began what is now a decade long process of converting our production
environment from a well-established REYES pipeline to a completely different,
raytracing paradigm. Understanding how each rendering method achieved the
value of a pixel was key to adapting and optimizing our new workflow. This
anecdotal account of the transition and documentation of the changes to our
way of working conveys some of the successes and some of the trials experienced,
the loss and the gain. At each step, our workflow has to be tweaked and the

16

changes collate into an effective methodology of approaching a raytracer on ever
shrinking production schedules.

As pure raytracing workflows become normalized throughout the visual ef-
fects industry, the more experienced artists and technicians will become experi-
enced with its idiocyncracies, its strengths and its weaknesses. With computing
machinery getting ever cheaper and the simulation of light transport ever more
sophisticated, these techniques will expand. Already in 2014, we see the shift
toward techniques such as bidirectional path tracing that will usher in yet an-
other transition akin to the move from REYES to raytracing, bringing with it
a new jump in techniques and workflow.

7 Acknowledgments

Thanks to Sony Pictures Imageworks and CTO Rob Bredow and for supporting
the continued development of raytracing at SPI; the SPI Arnold Team both past
and present, Larry Gritz, Christopher Kulla, Cliff Stein, Alejandro Conty, Rene
Limberger. Additional thanks to Larry Gritz for the diagrams used in Figures
2 and 3, created for a discussion on REYES vs. raytracers at Sony Pictures
Imageworks.

References

[1] T. L. KAY and J. T. KAJIYA. Ray tracing complex scenes. In Computer
Graphics (Proceedings of ACM SIGGRAPH), volume 20, pages 269–278,
1986.

[2] T. WHITTED. An improved illumination model for shaded display. In
Communications of the ACM, volume 23, June 1980.

17

!
!
!
!
!
!
!

Raytracing in Production
at Double Negative !

Søren Ragsdale
Double Negative Visual Effects

sorenr@gmail.com
!
Siggraph 2014, Vancouver Canada  

� of �1 14

mailto:sorenr@gmail.com

1 Summary! 3!
2 Introduction! 3!
3 New beginnings with “V4” ! 4!
3.1 Design Decisions! 4!
3.2 New Concepts for Artists! 4!
3.3 Control Variates! 6!
3.4 Network Shading Structure ! 6!
3.5 V4 In Production! 6!
3.6 Rendering Challenges! 7!
3.7 Renderer Diversity! 8!
4 REYES and Rays! 9!
4.1 Dicing More Polys into Fewer Micropolys! 9!
4.2 Interpreter Overhead and Indirect Shading! 10!
4.3 Extraneous Points for Derivatives! 10!
4.4 What about OSL and RIS?! 11!
4.5 Irradiance Caching! 11!
4.6 RenderMan 19! 11!
5 V5 and Renderer Diversity! 12!
5.1 Moving from RSL to C! 12!
5.2 Simplified Shading: Less Is More! 12!
5.3 Texturing with SeExpressions! 12!
5.4 Cross-Platform Shading! 13!
6 V5 In Production! 14!
7 Best Practices and Future Work! 14!
8 Thanks! 14

� of �2 14

1 Summary !
An overview of the last 3 years of production at Double Negative. This paper and course presents a
series of attempts, decisions, problems, and solutions by Double Negative as we attempt to evolve a
traditional REYES pipeline into a robust, flexible physically plausible solution for production cinematic
rendering.
!
2 Introduction

For many years rendering for visual effects was largely dominated by rasterizing renderers. Lighting
artists used raytracing sparingly, often as a last resort for specific problems. By the early 2000s a
combination of new research, robust raytracing solutions, and more capable compute resources
created renewed interest in raytracing as a general approach. At the same time research was also
progressing with new techniques to more accurately simulate the propagation of physical light and
reflection properties of physical surfaces.
!
Beyond obvious visual improvements, there are clear practical advantages of a rendering solution of
physically based BRDFs and Monte Carlo integration. A hand-tuned raster scene may run faster than
an equivalent raytraced scene, but reductions in storage and pass management make “slower”
raytracing a net economic win. As the price of computing resources continues to drop, physically
plausible assets allow fewer artists to turn over more shots. Physically plausible assets also save
effort by facilitating easy re-use between shows: a police car asset developed for a chase scene in
one production can be dropped into a junkyard scene in another production. With proper shading
and look development practices, it “just works”.
!
In 2010, the Double Negative shading team began a major update to our shading library. Two
complete rewrites our code base resulted in significant changes to our overall rendering strategy. This
paper covers the first ~3 years of our ongoing effort to stay abreast of best practices for production
efficiency and physical realism. Beyond research papers, maths, and algorithms, other concerns
such as artist expertise and confusion, legacy tools, and financial constraints add unavoidable
complications the already challenging task of keeping pace with evolving research. 

� of �3 14

“Strategy is a system of expedients; it is more than a mere scholarly discipline.
It is the translation of knowledge to practical life, the improvement of the

original leading thought in accordance with continually changing situations.”
 - General Helmuth von Moltke "On Strategy" (1871)

3 New beginnings with “V4” !
In 2010, the Double Negative rendering pipeline made heavy use of Pixar's RenderMan. We began in
late 2010, targeting the upcoming release of RenderMan 16 for a new round of shows slated to begin
in six months. The first public API for “16.0b1” in November 2010 made no mention of physically
plausible shading, so we wrote an entire sampling and integration stack to handle everything from
sample generation to final integration in RSL. This first shading library was completely outside the
16.0b3 API which would be announced in March 2011.
!
3.1 Design Decisions !
Early on, there was disagreement about the meaning of a light's “brightness” means. Some artists
and lighting packages favour a brightness parameter dictating irradiance, or energy per square unit of
area light. Double Negative artists found it more comfortable familiar to use a lighting parameter
representing the overall power of the light. A light’s power is maintained by scaling its per-unit
irradiance as its overall area increases, allowing the softness of the light’s shadow to be adjusted
independently of its brightness.
!
V4 had been written with support for a modified Lambert, Microfacet, Beckmann, GGX, Phong,
Distributions, and Ward BRDFs. In production most of these options were unused - look development
artists generally used modified Lambert for diffuse and Ward for specular, or GGX in cases where
rough specular surfaces should be realistic. The “long tail” of the GGX reflection curve extending out
to glancing angles takes a large number of rays to sample without variance, but the results speak for
themselves.
!
3.2 New Concepts for Artists

� of �4 14

small light / smooth surface large light / rough surfacesmall light / rough surface

!
Artists transitioning to a physically plausible pipeline were required to cast off the artificial
abstractions from old workflows and assumptions. There are no such thing as point light sources in
the real world, or in V4. Spotlights are now objects with physical size and shape. Parameters such as
“specular size” or “shadow blur” are driven implicitly by a light’s size and position or a surface’s
roughness.
!
V4 light colours are configurable by familiar RGB values, and also with realistic black body colour
temperatures. This decision was not only helpful for matching physical set lights with known values,
but during artistic lighting to provide a realistic richness which can be difficult to achieve by guessing
at values. These three scenes are illuminated by 1700K, 5000K, and 9300K lights.

In a traditional pipeline, artists could take an ad hoc approach to look development by changing
parameters like “specular size” and “reflection colour” until the render matched the reference. In a
physically plausible pipeline, artists must actually understand the physical properties of materials -
the difference between the reflection of a conductor and a dielectric, or the real physical structure of
a layered material. Lighting has become simpler, but lighting artists must now understand how light
actually behaves. Using physically based BRDFs and attribute values from physical tables can yield
realistic results quickly.

Compositors were also required to adjust their thinking and workflows. Comp-friendly shadow
passes were obsolete. In a scene where opaque surfaces can create shadows from multiple lights,
and those shadows can be illuminated by indirect light or emissive surfaces, the notion of “shadow”

� of �5 14

Left to right: glass, ceramic, silver, chrome, blackbody emission, gold, and matte

is poorly defined. Light is additive but shadows are not. Where necessary, compositors could
approximate shadow passes by subtracting the final image from an “unoccluded” pass:

3.3 Control Variates !
Control variates were applied to decrease variance in sampling, by augmenting ray-based 1

integration methods with analytical methods. In this case, diffuse integration may require a large
number of samples and still produce substantial variance. In the example of diffuse illumination, a
convolution of the environment map provides a perfectly smooth representation, but without
occlusion. Monte Carlo integration may also sample occlusion, but with high variance unless many
expensive samples are used. Control variates are a way to blend between these methods using
smooth convolution maps when occlusion is low, and ray-sampled diffuse when occlusion is high.
Control variates can also work for arbitrary area lights if they have an analytic approximation.
!
3.4 Network Shading Structure !
Artists were presented with a new shading structure. Surface
shaders were configured with direct and indirect lighting integration
nodes and an “aggregate material” node containing one or many
BRDFs, which could reference procedural or texture pattern
generators.

!
3.5 V4 In Production !
The first production test for the V4 code base was "The Pirates!
Band of Misfits" (2012). “Pirates” was a relatively easy first target,

� of �6 14

 Mark Colbert, Simon Premoze, and Guillaume Francois “Importance Sampling for Production 1

Rendering” § 2.3.3, Siggraph 2010

unoccluded pass “shadow” passfinal render pass

with simple clay characters, controlled lighting environments, and a stop-motion aesthetic without
motion blur. Picking a smaller, less challenging production for deployment of new tools is important
both for the success of the production and the perceived success of your tools.

!
“The Dark Knight Rises” was also a highly successful production. The director’s affinity for physical
effects and practical environments limited rendering to the addition of characters or vehicles.
Reference photographs and physical surveys on set of lights, environment maps, and set pieces
allowed the creation of assets which performed consistently across different action sequences.
!
“Snow White and the Huntsman” presented a greater challenge due to a number of interior shots lit
primarily by large windows. To efficiently render these scenes we implemented “light portals” to guide
the direction of light samples. When rendering interior scenes, only a small percentage of occlusion
rays will escape the scene and reach exterior lights. Light portals are rectangular shapes which
designate these open areas. Portals do not change the appearance of a render, but they can vastly
improve render time by restricting rays to productive directions. If your renderer parameterises the
space as polar coordinates, portals may work better for windows at the horizon than skylights
overhead. If your renderer supports bidirectional path tracing, this is a better general solution which
can obviate the need for portals entirely.
!
3.6 Rendering Challenges !
“Total Recall” presented larger challenges than previous shows due to the content of the work.
Concept art and on-set reference photography showed scenes with hundreds of physical lights, and
artists dutifully created scenes with 400-5000 area lights. The associated performance problems
were solved with a dedicated light tracing DSO presented at “Stupid RAT Tricks 2012”.
2

!
“Total Recall” concept art featured geometrically dense, procedurally generated virtual city
environments. Scenes with dozens of densely detailed, procedurally generated buildings resulted in
impractical render times and memory requirements. To control the complexity of distant buildings we

� of �7 14
 http://www.renderman.org/RMR/Examples/srt2012/dnLightTracer.pdf2

http://www.renderman.org/RMR/Examples/srt2012/dnLightTracer.pdf

developed “lightable brick map” object proxies. Brick maps are a type of file-based octree 3

implemented in RenderMan which contain volumetric information such as surface colour or opacity.
By “baking” a simple subset of geometry and surface parameters such as diffuse, reflection, and
glossy albedo into file-based brick maps we could provide an efficient proxy representation of static
geometry. At render time this baked representation is rasterised into a camera-facing discs, retrieved
at a sufficient depth to provide detail at the scale dictated by camera distance. This strategy was
visually superior to 2D cards, while remaining very efficient in speed and memory, and surprisingly
compatible with Monte Carlo, although extremely large trace bias settings were often necessary to
avoid self-shadowing artefacts. Without large trace bias values, a diffuse ray with large derivatives
departing a brick map object might intersect with a lower-resolution level of the same object.

“Man of Steel” followed with an even larger scope of work, as the nearly 2000 buildings in the city of
Metropolis were destroyed during a climactic fistfight between Kal-El and General Zod. While
lightable brick maps were a crucial component in this show’s rendering pipeline, brick maps could
not be used in place of dense animated geometry such as collapsing buildings. The difficulty of our
RenderMan/V4 approach to render animated collapsing buildings and the limitations of lightable brick
maps necessitated a new approach to renderer diversity.
!
3.7 Renderer Diversity !
A handful of shots from “Man of Steel” which could not fit within the constraints of RenderMan/V4
were rendered using Mantra, the first step into Double Negative’s current effort toward renderer
diversity. The ability to render identical assets across multiple renderers has also been helpful in
identifying bugs and performance issues in internal and external code. Investigation into the
problems associated with rasterisation of large polygon data sets - the root causes of these
performance issues and how to address them - resulted in significant improvements to RenderMan,
formed the basis of a new shading library, and spurred an effort toward renderer diversity. Lightable

� of �8 14
 http://renderman.pixar.com/resources/current/rps/brickmapgprim.html3

Shots from “Man of Steel” (2013) using V4 and relightable brick maps to render large numbers of intact and
collapsed buildings.

http://renderman.pixar.com/resources/current/rps/brickmapgprim.html

brickmaps were crucial for finishing the majority of the film’s static buildings, but could not be used in
scenes with animated collapse.
!
4 REYES and Rays !
Published in 1984, the REYES algorithm was designed to render within the constraints of early 4

computing. Its performance innovations included:
!
• Geometry is kept in memory as high-order surfaces, and only diced into micropolygons when

necessary for shading to minimise memory footprint.

• All micropolygons from a patch are shaded together using a data-parallel SIMD approach to 5

maximise CPU and texture cache coherency.

• Shading products from adjacent micropolygons are used to compute shading derivatives via finite

differencing methods.
!
This strategy was tremendously effective during their time, but today these performance features can
create problems unless their implications if they are not fully appreciated.
!
4.1 Dicing More Polys into Fewer Micropolys !
For smaller assets, a relatively small number of higher-order shapes can be efficiently diced into a
large number of micropolygons to create smooth shading. As geometric complexity increases, more
shapes must be decimated to yield fewer micropolygons. It is not uncommon for current show assets
to have a dozen polygons per pixel. A recent asset in “Jupiter Ascending” contained an average of
110 polygons per final rendered pixel. With increasing geometric density, the setup cost for dicing
more patches into fewer shaded polygons becomes significant.
!
Supervisors working with high-complexity assets should be careful to avoid hidden or unnecessary
detail. Simple diagnostic shaders can highlight assets with wasteful detail. The trend toward higher
resolution asset is one factor currently driving production renders toward raytracing. Regardless how
many objects are inside one render bucket, camera rays obviate dicing while limiting shading to the
primitives that the rays hit.
!

� of �9 14

 http://dl.acm.org/citation.cfm?id=374144

 Single Instructions executed on Multiple Data5

http://dl.acm.org/citation.cfm?id=37414

4.2 Interpreter Overhead and Indirect Shading !
The data-parallel execution of shader code across large patches of points comes with significant
coherency benefits, and is very easy to vectorise if target hardware supports it. Unfortunately this
approach comes with equally significant
expenses such as variable binding and per-
shadeop dispatch costs. These costs dominate
in the above case of large collections of small
patches, or during evaluation of indirect
illumination. In this illustration, the interpreter
costs for evaluating direct lighting in the primary
patch (green) is offset by the large number of
micropolygons simultaneously evaluated.
Indirect samples (red) incur the same interpreter
costs to evaluate proportionately fewer samples.

!
4.3 Extraneous Points for Derivatives !
Finite differencing is a method for calculating
variable derivatives from adjacent samples. In
the above illustration, evaluation of direct
lighting on the bottle requires the evaluation of a
relatively small number of extraneous points
along the edge of the bottle’s patch. For
secondary illumination, the evaluation of a
single sample on the wall may require two
extraneous evaluations in ‘u’ and ‘v’, effectively
tripling the cost of shading. In the above illustration, primary integration on
the green portion of the bottle results in the evaluation of 40 primary samples and 13 extraneous
samples. The secondary lighting from the wall - one of potentially hundreds or thousands - results in
one primary sample and two extraneous samples.
!
To avoid unnecessary overhead in shaders which evaluate extraneous points for finite differencing,
test whether your shader evaluation is occurring on primary shading. Run cheap evaluations
(displacement only, if possible) if the point is extraneous.
!

� of �10 14

image courtesy of Ryan Hurd

image courtesy of Ryan Hurd

4.4 What about OSL and RIS? !
RenderMan RSL is not the only interpreted shading language, so why don't the languages OSL and 6

VEX, , which also compile shading their shaders into a bytecode representation, suffer from the same
penalties?
!
OSL complies to LLVM bytecode which is eventually converted to native machine code, so there’s no
interpreter overhead. OSL is executed vertically, so there’s no vectorisation penalty on small sets of
points. OSL does not use finite differences for derivatives, so it does not calculate extraneous points:
it uses automatic differentiation, computing the partial derivatives of the variables that lead to
derivatives.
!
4.5 Irradiance Caching !
The performance considerations mentioned above are most adverse when evaluating diffuse
illumination, which often requires a very large number of widely distributed samples. Diffuse
irradiance caching is employed to save the results of view-independent components for further use.
Unfortunately this caching strategy also introduces complications. Low-importance secondary rays
must be computed at high quality because their values may be cached. Burdened by this obligation,
a renderer can fill the cache with unnecessarily high quality lighting information than it will never use.
!
4.6 RenderMan 19 !
The above performance issues are the major reason driving the significant changes announced in
RenderMan 19.0 this year. Path tracing from the camera reduces the REYES overhead from dicing
large numbers of patches into small numbers of polygons. With the RIX code path in C, the overhead
from the RSL interpreter has been eliminated - shaders can be efficiently evaluated on single
samples, which also makes irradiance caching unnecessary. Bidirectional integrators improve
sampling in enclosed surfaces without the need for portals. The new “RIS Mode” API allows shaders
written in C to shade multiple points at a time, in a data-parallel if the shader writer chooses, without
the overhead of the RSL interpreter.
!
!

� of �11 14
 http://github.com/imageworks/OpenShadingLanguage6

http://github.com/imageworks/OpenShadingLanguage

5 V5 and Renderer Diversity !
In late 2012, based on ~18 months experience with V4 in production and the performance issues
mentioned in the previous section, we began a complete rewrite of our V4 code base which we
imaginatively called “V5”.
!
5.1 Moving from RSL to C !
To minimise RSL interpreter costs, as much code as possible would be moved inside C DSOs.
Layered BRDF combining, light and material sample generation, and BRDF evaluation were handled
within DSOs. Testing for extraneous shading made sure that full surface calculations would not be
wasted on points which would be visible.
!
5.2 Simplified Shading: Less Is More !
In theory, node-based shader networks offer a flexible way for artists to configure shaders. In practice
these networks were unwieldy to set up, invited wasteful errors such as variables duplicated between
nodes, and contained configuration variables scattered between the integrator, master material, and
aggregate material nodes. V5 surface shaders were rewritten to be monolithic, to create a more
regular and simplified interface. Many optimisation settings were also eliminated - either removed
when they were rarely helpful, or hardcoded when they were always helpful. Reflection function
models were pared down to Burley diffuse , Ward , Generalized-Trowbridge-Reitz
7 8 9

 (GTR), and GGX .
10

!
5.3 Texturing with SeExpressions !
For almost every shading parameter there is some usage case where an artist would want that
parameter driven by a texture map. Increasing sets of texture maps, and the necessity of parameters

� of �12 14

 http://blog.selfshadow.com/publications/s2012-shading-course/burley/7

s2012_pbs_disney_brdf_notes_v2.pdf

 Bruce Walter. Notes on the Ward BRDF. Technical Report PCG-05-06, Cornell Program of Computer 8

Graphics, 2005.

 http://blog.selfshadow.com/publications/s2012-shading-course/burley/9

s2012_pbs_disney_brdf_notes_v2.pdf

 Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models for 10

refraction through rough surfaces. In Proceedings of the Eurographics Symposium on Rendering,
2007.

http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v2.pdf
http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v2.pdf

to describe constant values, map names, and adjustment parameters like blend or contrast lead to a
parameter explosion which are particularly detrimental to indirect shading for the reasons discussed

in §4.2 and §4.3.
!
To provide flexibility without increasing texture counts or shader parameters, V5 shaders have values
represented as expressions evaluated by Disney’s SeExpression library. Nearly all variables in V5 11

are SeExpressions, from simple scalar values to multi-line expressions which combine input from
several textures. This approach can facilitate rapid and flexible look development, although care
should be taken to simplify expressions before production rendering begins. SeExpressions also
support procedural pattern generation, but since SeExpressions do not natively support texture
derivatives care must be taken to avoid aliasing.
!
5.4 Cross-Platform Shading !
Support for renderer diversity which started during “Man of Steel” was a major design goal of V5.
With the bulk of the shading library implemented in C, general-purpose shading functions can be
called from any renderer which with support for a C API. Isotropix’ “Clarisse” is a relatively new offline
raytracer and interactive rendering environment. In early 2013 we created a Clarisse shading library
using the core V5 shading library. This approach required a minimum of new code, with identically
configured assets producing consistent output between RenderMan and Clarisse. Side Effects’

� of �13 14
 http://www.disneyanimation.com/technology/seexpr.html11

http://www.disneyanimation.com/technology/seexpr.html

“Mantra” has also taken on a significant role in production, whose shaders also use calls into Core
Shading.
!
6 V5 In Production !
The “V5” shading core and its various manifestations have been the mainstay of production for the
last year at Double Negative. “Thor: The Dark World” was predominantly a RenderMan show
following in the footsteps of “Man of Steel”, with character and interiors traditionally rendered and
large exterior flythroughs making heavy use of relightable brick maps. “Jupiter Ascending” made
heavy use of the Mantra pipeline. “Godzilla” was the first show to make limited use of Clarisse, which
is playing an increasing role in current productions.

7 Best Practices and Future Work !
• Deploy major releases on small shows before use on large shows

• Take care with procedural geometry: emit instances where possible

• Renderer diversity

• lets studios leverage different strengths on different shots

• exposes visual and performance bugs

• preserves negotiation flexibility, avoids expensive “lock-in”

8 Thanks !
Team DNeg: Marc Bannister, Emmanuel Turquin, Simon Premoze

Team Pixar: Philippe LePrince, Dana Batali, and Wayne Wooten

Team Miscellaneous: Jesse Andrewartha, Larry Gritz, Adam Martinez

� of �14 14

COURSE NOTES
SIGGRAPH 2014, VANCOUVER, CANADA

TURNING IT TO ELEVEN

Establishing best practices

in raytracing at

Sony Pictures Imageworks

PRESENTED BY:

Jesse Andrewartha
Sony Pictures Imageworks

Contents

1 Introduction 2

2 The nomenclature of raytracing 2

3 Approaching Optimization 3

4 Examples and Best Practices 6
4.1 Optimizing fr1214: The ‘Spider-Man Flythrough’ 6
4.2 Sampling . 6
4.3 Subdivision and meshes . 15
4.4 Wrapping it up . 16
4.5 Optimizing ee4418: Electro . 17
4.6 Refractions and rays . 17

5 Conclusion 20

6 Acknowledgments 21

1

1 Introduction

The establishment of “best practices” at Sony Pictures Imageworks (SPI) has
been the culmination of over seven years of productions working solely with
SPI’s Arnold renderer, transitioning from REYES to monte-carlo raytracing
and optimizing performance issues in all subsequent productions. Since the
adoption and co-development of SPI’s Arnold by SPI with Solid Angle SL al-
most a decade ago, raytracing has provided a tool that permits far greater
consistency, more sophisticated lighting effects and removes the burden of main-
taining libraries of supporting maptypes required at render time. In exchange,
the system is less tolerant of non-photorealistic approaches, provides fewer con-
trols and can easily be tweaked so that performance comes to a standstill. For
VFX artists, the change was not without challenges; maintaining rendering ef-
ficiency in production has required a myriad changes in workflow philosophy
and implementation. The creation and adoption of OSL further unified render-
ing but also further shifted the landscape from beneath artists and technical
directors. The result has been a massive re-education of how to manage the
rendering environment.

In our day-to-day experience, we see not only the benefits but also the short-
comings of our pipeline. In this document, we are going to reveal the culmina-
tion of over seven years experience working day-to-day with a raytracer-centric
pipeline, our “best practices”. In this discussion, we will be using examples and
discussing scenarios we encounter with our renderer, SPI Arnold, but many of
the concepts should be general enough to apply to most modern production
raytracers.

2 The nomenclature of raytracing

In examining optimization, there are a number of terms that will be used in the
course of this discussion which have specific meaning in context to our renderer.
These will be changed for both reader accessibility and proprietary reasons.
Because SPI’s development of Arnold has occurred parallel but separately from
Solid Angle SL (our branches of the renderer separating soon after version 3.0)
Arnold will be called SPI’s Arnold.

In examining production examples, we will be using specific nomenclature in
relation to raytracing; let us start out with a quick refresher on how a raytracer
like SPI’s Arnold samples the scene.

Camera Rays are fired into the scene from a camera; these are the initial
rays that kick off the raytraced render. The ray travels into the scene
until it hits an object, at which point the surface is evaluated. If required,
further rays are fired and the final object color is returned. The number of
camera rays per pixel fired into the scene are determined by AA Samples
(which stands for Antialiasing Samples). All sampling in SPI’s Arnold is
calculated “n x n”, so that if you have AA_samples = 8, then in reality
you have 64 camera rays per pixel.

2

Shadow Rays originate from a ray intersection point on a surface . The
purpose of the shadow ray is to determine if the point is in shadow. Shadow
samples are set in the light and the default is 1, meaning one shadow ray
is fired for each incoming ray.

Reflection and Glossy Rays are fired from the same intersection point if
the shader has a specular value greater than 1.0. Whether or not the ray
is glossy or reflection depends on the specular model: specular roughness
greater than zero (ie- mirror) will result in a reflection ray, whereas any
roughness will result in glossy rays.

Diffuse Rays are used to gather the indirect diffuse contribution to the
the point being shaded. Diffuse rays are fired randomly in a 180 degree
hemisphere tangent to the point. These rays are fired if the diffuse ray
depth is greater than zero. The number of diffuse rays per pixel are
determined by GI diffuse samples.

Refraction Rays are used for any surface with opacity less than 1.0 and
the number of refraction rays is determined by GI refraction samples. The
refraction depth is determined by GI refraction depth.

You will note from this that any increase in the AA samples/Camera Rays
will result in the exponential increase in any subsequent raytype. This is im-
portant in the following sections.

3 Approaching Optimization

So imagine yourselves lighting a shot; you have started to establish the mood
and are fairly settled on the light configuration. There is only a week budgeted
for lighting the shot (if that) and you need to render a final quality test. Your
supervisor is anxious to get something in front of the visual effects supervisor
and informs you that you need something on the cue by the afternoon. Many
people faced with this situation react by ‘turning it to 11’: overcranking the
antialiasing samples with the idea that if there are simply enough camera rays,
their render will be smooth. It will take time, but the ethos is to move the work
of lighting from the artist to the machine, right? While technically true, simply
dialing the antialising often results in heartache, with unrenderable images and
missed deadlines. We need to intercept this process, both from the point of
view of the artist and the supervisor. It takes time, but optimization must be
seen by both parties as an investment; the determination of the best settings
for the shot through simple, small tests, only submitting the full version to the
cue when optimized. The result is that for most shots, we are able to achieve
considerably faster frames with just several hours testing. It is possible to see
those hours as time lost, but consider that those core hours would have otherwise
been taken cooking these frames that ultimately will not have finished or worse
still, shown problems and required a re-render. Instead, the farm was free to

3

render other artist’s jobs and when we finally submit to the cue, the frames
are optimized and run much faster, completing in less time than the original
estimate even considering the time investment in optimization. So how do we
approach optimization?

The short answer is that we must become detectives. To resolve image
artifacts and improve render performance we must first understand how these
problems are created, then divide and conquer. So what problems are there and
how are they created?

Take a look at Figure 1 and imagine that you have a dartboard with a photo
on it (on our screen, the pixel is the “dartboard” and the scene is the “photo”)
and you want to know the average colour of the photo. It is easy to see what
the colour is at any one point, so you throw a bunch of darts and then average
the results.

Figure 1: An illustration of how we sample in a raytracer such as SPI’s Arnold

(a) If the dartboard is all one color, it
takes just a few darts to get the correct
average.

(b) If the dartboard is half one color and
half another, a whole lot of darts will still
give you a good average.

(c) But if you have a complex pattern
(say, this image of an apple) and use just
a few darts, say 8 darts...

(d) ...then sometimes half will be red
and half green, sometimes 6 will be one
color or the other, and sometimes just by
coincidence all will be on the red apple,
despite only a fraction of the board being
the red apple.

So how do we fix this? There are three ways:

Option 1: Improve your dart throwing so they do not bunch up as much
(that is what the SPI Arnold team does).

Option 2: Increase the number of darts (sampling).

4

Option 3: Try to make the pattern on the dartboard simpler, so fewer
darts are necessary to estimate the average (such as the use of MIP-
mapping, limiting noise octaves and decreasing the frequency content of
patterns).

For the artist, let us evaluate these options: Option 1 is literally beyond
artist control; engineers consistently work toward better resolution of noise
within an image, but we are limited by current research and investigation.
Option 2 resolves noise at the expense of performance. Option 3 typically
involves the optimization of scene elements but oversimplification can impact
image integrity. Optimizing rendering performance and reducing noise usually
is a combination of Option 2 and Option 3. If optimization with Option 2 still
leaves renders that exhibit noise, then it is often a matter of Option 3, which
may be an optimization that is required in any scene element from the textures
to the meshes.

Figure 2: A generalized flowchart to help diagnose noise in a raytraced render.

5

Raytracers are powerful but can be fickle and easy to abuse; simply turning
up sampling without careful consideration will result in untenable renders that
cannot be iterated in a reasonable time, which was our original problem. It is
essential to consider where the noise is coming from. Early on in the process of
developing a methodology for optimizing shots, I created a flowchart to assist in
locating the source of noise (refer to Figure 2). This can be useful as a checklist
to work through noise issues and most cases can be narrowed down or solved
using such a chart.

4 Examples and Best Practices

In this section, we will be examining the diagnosis and causes of rendering and
performance issues. It is most useful to use actual examples from productions
to put these items into practice, so we will be investigating two shots from “The
Amazing Spider-Man 2”: fr1214 , A flythrough of NYC, and ee4418 , A shot
with Electro transforming into electricity. Please note all times discussed in
these examples are single-core render times.

4.1 Optimizing fr1214: The ‘Spider-Man Flythrough’

I chose this shot because the problems present in this shot are common in renders
that require optimization and offer a good test bed for the concepts outlined
above.

Figure 3: The initial render: Max 48GB RAM and 155 hours per frame. Note the noise
present throughout the image

4.2 Sampling

Figure 3 shows clearly the artefacts that need to be addressed: noise on the
ceiling props, as well as general noise. This was exacerbated as Spider-Man flew
through the chasms between buildings, combining high speed pans from light
to shadow with highly specular materials and massive amounts of geo visible

6

to the camera at any given moment. The artist was attempting to render the
images at 4K to overcome problems in noise and sampling and were running
past memory and render performance limits. With some optimizations, we
were able to reduce the memory footprint down from 48GB to 19GB, bring the
resolution back down to 2K and reduce render time from 155 single-core hours
to 35 single-core hours while maintaining image integrity.

The first aspect we are going to tackle is sampling, our Option 2. But we
cannot simply just increase sampling, that would result in even worse perfor-
mance; our aim is to improve performance and reduce artefacts at the same
time. The best place to start is to examine the logs. Looking at the log, we can
easily find the settings for each of the main ray types:

AA_samples: 8
AA_sample_clamp: inf.
GI_diffuse_samples: 3
GI_total_depth: 20
GI_refraction_depth: 16

These are high settings, but we still have noise. It is a fast paced shot and
any undersampling of the blur is going to show. You can confirm whether it is
motion blur noise by checking the alpha; if there is insufficient rays to sample
the geometry, then the alpha of the geometry will appear noisy. Note the two
different sampling contexts that are occuring in Figure 4:

Figure 4: An illustration of motion blur in SPI’s Arnold

(b) motion blur=off 1
camera ray/pixel

(c) motion blur=on 1
camera ray/pixel

(d) motion blur=on,
alpha

7

Motion-blurred sphere: With motion blur on, the sphere is randomly
time sampled across its motion arc. With insufficient sampling, rays may
not intesect with geometry at every sample. This results in noise.

Non-motion-blurred sphere: Rays fired from the camera will intersect
the sphere even at AA_samples = 1, creating a smooth, if not a little
aliased, image.

In a heavily motion blurred shot like this where we see motion blur noise, we
must increase the camera rays, or AA_samples to decrease motion blur noise. As
previously mentioned, if we simply just increase AA_samples, then our perfor-
mance is going to decrease. To combat this, we can pull down other subsequent
raytypes to compensate for the increase in camera rays. Let me explain: Re-
member how I mentioned earlier that all sampling in SPI’s Arnold is “n x n”?
What this means is that if you increase the camera rays, then all subsequent
raytypes will increase exponentially; you will notice this occuring in Figure 5.
But assuming other raytypes were rendering without noise, then any additional
sampling is simply wasteful.

Figure 5: The impact of increasing AA samples on render time.

AAsamples

ti
m

e[
se

co
n
d
s]

1 2 3 4 5 6
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Render time (s)

Let us take our example shot; we have the original render which used
AA_samples = 8, but there is noise. The lighter compensated for the noise
by increasing diffuse_samples to 3 and each of the 10 lights to 2. This dealt
with noise, but the motion blur was still noisy. So the AA_samples needs to
be increased, but diffuse and light samples must then be decreased to avoid
oversampling.

Note in table 1 that with a simple increase in the AA_samples to 12, we
get a massive increase in total rays as seen in column 3. By column 4, we have
reduced GI_diffuse_samples to 1 and each light to samples = 1, resulting in a
massive reduction in total raycounts while maintaining high camera rays. Even
though this render would have 1/3 the original number of rays, motion blur and

8

geometry will be better sampled. It is worth testing renders with the aggressive
optimizations; many cases will provide quality images.

Table 1: Ray numbers resulting from modifying AA samples, GI diffuse samples and light
samples

Ray type original
sampling

AA samples
increase
only

aggressive
optimization

measured
optimization

AA samples 8 12 12 12
GI diffuse samples 3 3 1 2

light samples 2 2 1 1

camera rays 64 144 144 144
diffuse rays 576 1296 144 576
shadow rays 2560 5760 1440 1440

total rays 3200 7200 1728 2160

Remember, it is not necessary to eliminate all noise; in comp, there is often
some amount of grain that is added back in. We are after images that can match
the plate, not perfection. Artists often end up increasing sampling in a vain
effort to eliminate noise completely, when you only really need to approximate
the grain that exists in the final comp.

This scenario is a vast simplification of a complex issue involving many
participating media and raytypes. But it is clear with even this limited example
how we can work towards applying sampling only where we need it while keeping
all other raytypes as close to the original sampling level possible. We can go even
further: Do we need all 10 lights? Check the output of each; if we consolidate we
can increase sampling on the remaining lights. This leads us to another issue:
specular noise.

You will notice on some of the metal and other thin, specular geometry there
is noise. This is a common phenomenon often mistaken for glossy noise, when
in fact this is caused mostly by direct specular highlights from bright lights, not
glossy reflections. This is not an SPI Arnold only problem, but common to all
renderers.

Also, basically any high intensity, low relative-radius light source has the
potential to create noise on a low-roughness specular surface. When the geom-
etry is thin and motion blurred, this effect is exacerbated (Figure 6). There
may be a myriad reasons why this condition exists in a scene. Sometimes it is
an inherited rig where there is a light that has been set too high. Sometimes
it is a specific sample setting that is appropriate in one shot but not others
and the artist does not even consider there may be an issue until images return
with untenable noise. Because this is not due to glossy rays, increasing the
GI_glossy_rays will have no impact.

Increasing light samples in the lights can improve the direct specular in some
cases, but it is important to isolate and test the lights responsible for the specific

9

Figure 6: A close-up of a highly specular, motion-blurred object

(a) At AA samples = 8,
artifacts are clearly visible

(b) At AA samples = 20,
it still shows noise.

specular in question. Each light adds more samples to the scene, which adds
render time (Refer to Figure 7).

Figure 7: The impact of increasing light samples for 3 lights on render time.

lightsamples

ti
m

e[
se

co
n
d
s]

1 2 3 4 5 6
300

330

360

390

420

450

Render time (s)

More often than not, it is simply a matter of increasing AA_samples. But
here again we face a situation where all other sampling might be sufficient, even
the motion blur on non-specular surfaces, but it is just these glints that are prob-
lematic. It is not always immediately obvious, but any specular that requires
more than 12-14 samples in either the AA_samples or GI_glossy_samples
should be considered for a workaround. The cause of the hot pixels can be
varied. It is possible that the ray sampled a super-hot reflection, or the surface
of an area light or the bright sunspot of a skydome. There are some simple tests
that can be used to isolate and resolve each of these scenarios. Here are the
steps to resolve specular noise:

1. In-camera solutions:

10

(a) AA sample clamp to limit the maximum permissible value of any
given sample.

(b) light decay clamp to limit the intensity at the light surface
(c) Checking the skydome for any ultra-hot sources, such as sunspots.
(d) Splitting out the responsible specular: While ugly, it permits tar-

geted optimization without incurring the expense of any other scene
elements. Isolate the geo and turn off all GI and material compo-
nents, then render at ultra-high AA_sample rates like 25-30.

(e) vector blur: Ugly, problematic but may deliver a smooth rendered
frame when all else fails.

(f) Motion blur a projection: render a single frame of the isolated spec-
ular, then reproject and render normally.

2. Comp solutions:

(a) Filtering in comp: Use of a median filter or equivalent to smooth the
offending specular.

Clamping is a biased but effective way in which we can have absolutely
no impact on render time or performance, but a substantial impact on the
appearance of noise. By default, there is practically no limit to the value any
sample can return. This is particularly true in the case of physically-based lights
where the light intensity at the light surface can literally be measured in the
millions. What this means is that you can get ultra-hot pixel noise in your
scene. At the global level, we can adjust the AA_sample_clamp can help control
these highlights. Let us look at a theoretical line of pixels in a noisy area of an
image.

In the row of twenty pixels in Graph (a) of Figure 8; the white pixels result
from subsamples returning very high values.

Figure 8: Representation of AA sample clamp.

20

pixels

v
a
lu

e

(a) AA sample clamp = inf. (de-
fault)

20

pixels

v
a
lu

e

(b) AA sample clamp = 20

This is in contrast to the surrounding pixels which have a much lower value;
this difference shows as noise. In Graph (b) we have clamped the number to

11

20. This means any subsample values above 20 are clamped and the new pixel
value will be much closer to the values of the pixels around it. Let us take this
information and apply it with a closer look at Spider-Man in our shot:

Figure 9: AA sample clamp in use to control white hot pixels on Spider-Man’s arm.

(a) the original image with the analyzed section isolated

(b) A close-up of the problem pixels (c) A close-up of the same pixels with the
AA sample clamp=12

(d) A diagram of the pixel samples
forAA samples=2

(e) A diagram of the same pixels with the
AA sample clamp=1

Note the white-hot pixels on Spider-Man’s arm. If we tried to increase
samples to resolve this noise, we would have to raise the number extremely
high, which would not be renderable. Or we might consider splitting out the
spec pass to try and oversample that alone. If we reduce the AA sample clamp
to a low number, we can avoid any oversampling. You can see in Figure 9 that
the ultra-hot pixels have somewhat dissipated. This is because the clamp has
reduced the average value across the subsamples for each pixel, resulting in a

12

more homogeneous array of pixel values.
Another method that can be used to control these spec glints is by limiting

the intensity of a light at its surface. When implementing a physically plausible
light, the intensity at the surface can reach millions of units. While this method
still can result in high sample values, the restraining of surface intensity often
makes a visible difference in the appearance of noise and in combination with
other methods can be a very effective tool to control noise without any impact
on performance (Refer to Figure 10).

Figure 10: With decay clamp on, brightness never gets above the intensity at the decay
radius, which prevents any ultra-hot pixels

0 2 4 6 8 10 12
0

200

400

600

800

1,000

1,200

distance

in
te

n
si

ty

(a) decay clamp = off

0 2 4 6 8 10 12
0

200

400

600

800

1,000

1,200

distance

in
te

n
si

ty

(b) decay clamp = on

The use of floating-point images for skydomes is a common method in ray-
tracing to recreate skylight. Even though we fully utilize Importance Sampling
[2] on the skydomes, if that image contains a sunspot, we can occasionally create
conditions ideal for noise: a small, ultra-bright light source that can be hard
to sample, particularly when the object reflecting the skydome has any kind of
bump mapping, displacement or motion.

In these cases, substitution of the skydome texture for a homogenous color
can determine if this is the root cause: the noise will simply disappear. If it is
determined that the sydome is responsible for noise, there are several options
available:

1. Clamping the image: postprocessing the image to clip any high values
can create a map that is still an excellent skydome but eliminates any
ultra-high values that can cause noise

2. Enlarge the sunspot: Increasing the size of the sunspot makes it easier
to sample.

3. Blur the skydome: Similar to item 2, this makes the sunspot easier to
sample, reducing hard edges between bright/dark boundaries and increas-
ing the size of the sunspot.

Figure 11 shows the resulting map from each of these methods.
Modifying the skydome in this way is an effective way to use our Option 3 ;

there is no performance penalty and it requires no change in sampling to reduce

13

Figure 11: Modifying the skydome to help noise

(a) original: sunspot max=120 (b) clamped: sunspot max=12

(c) resized: max=120, but larger (d) Blurred, max=120, softer

noise. If we absolutely need to retain the value and sharpness of the skydome,
then we can use clamping in other ways to reduce artefacts.

It is recommended that no brightness be applied to an image in comp. If you
need to brighten an image, use the comp to guide how much to dial the lights
in the shot and re-render. If you increase the brightness of a render, this will
exaggerate any subtle noise in the image and will create noise where none was
noticeable before and may result in unnecessary efforts to resolve noise. Note in
Figure 12 that I have increased the gamma 3.5 stops to show the noise clearly:

Figure 12: motion vectors vs. motion blur The highly specular lighting and materials com-
bines to make this case one where motion vectors, although a biased solution, more preferable
under a tight deadline.

(a) No motion blur (b) with motion vectors. (c) True motion blur.

However, in the case of the flythrough, the increased AA_samples was suffi-
cient to control the specular. With sampling under better control, we can look
again at our Global Settings. It is time to see what we can do about Option 3.

14

4.3 Subdivision and meshes

Elimination or reduction of subdivisions on cars, crowds and other small ge-
ometry was essential. The vehicles and crowd geometry were developed at 2
subd iterations, even though there are hundreds of crowd avatars and a similar
number of cars, yet none above a few pixels high. We may not see it, but the
raytracer will still subdivide them all. In one instance, when we actually moved
the camera to street level and rendered a wireframe of the view, we found the
following:

Figure 13: Subdivided crowds with subd iterations=2. Note the camera is 1000ft away.

(a) the camera position (b) ...and the subdivisions at street
level

This complexity was widespread, even though it was not visible to camera.
Without optimization, the cars and crowds will easily consume gigabytes of
RAM and in our shot was responsible for the majority of the 48GB consumed
(Figure 13). As stated previously, it is important in sequence layout the con-
text in which particular assets will be shown. Set the subd_iterations to 0
to prevent any unnecessary subdivision. This cuts the memory consumption
significantly. As the edge profile is the main concern with most subdivision,
a simple check with a wireframe render with original subd_iterations and
at zero allows the user to adjust the iterations so that there is no discernible
difference between the two renders.

Many wide shots did not need any subdivision at all and most objects could
be converted to polymesh. Why would we go to the effort to convert to polymesh
when we could simply turn the iterations to zero? Even with iterations=0, SPI’s
Arnold will still attempt to move vertices to the limit surface. The process to
move a vertex takes a small amount of time, but if you have a massive scene with
incredibly dense meshes, this can make a meaningful difference in scene build
time. Ok, then, why not simply turn the subdmesh subdivision off using “ignore
subdivision” in the globals? Does not that do the same thing? The short answer
is no, it is quite different: when an object is a polymesh, it will still displace.
When an object simply has “ignore subdivision”, the displacements no longer
affect the mesh.

15

So it is recommended that one of the first renders should be a wireframe test
at the original settings and as a polymesh. This will give you an idea what needs
to be subdivided, what can be left at iterations 0 and what can be converted to
polymeshes. In the case of this shot, most of the objects could be converted to
polymesh with no visual impact.

4.4 Wrapping it up

The resulting combination of sampling changes and scene modification actually
cut render time approximately to 30% of the original. As you can see in Fig-
ure 14, the presence of noise is also markedly reduced. To recap, let us cover
what we have altered.

Figure 14: The optimized render: 19GB RAM and 35 core hours (down from 155 hours),
with significantly reduced noise.

Image courtesy Columbia Pictures ©2014Columbia Pictures Industries, Inc. All rights re-
served.

1. For geometry:

(a) Limited unnecessary subdivision iterations on meshes.

2. For sampling:

(a) We increased the AA_samples from 8 to 12. This eliminates motion
blur noise.

(b) We reduced the AA_sample_clamp from infinity to 20, which limits
the max of any given sample.

(c) We reduced the diffuse_samples from 3 to 1. This compensates for
the increase in camera rays

(d) We reduced the total_depth from 20 to 12. This limits the ray
depth and the possible number of rays.

(e) We reduced the refraction_depth from 16 to 8. As for the total_depth,
this limits the number of rays in the scene.

16

3. For volumes:

(a) We increased the Volume_step_size_mult from 1 to 5. At this dis-
tance and this speed, this reduction in the detail of the volume is not
noticeable but speeds up volume rendering.

(b) We increased the Volume_shadow_step_size_mult from 1 to 10.
The volume is thin and shadows do not have a significant impact
on the scene; reducing the detail of the volume shadows is not no-
ticeable but further speeds up volume rendering.

4.5 Optimizing ee4418: Electro

Following on from the investigation of the Spider-Man Flythrough, I would like
to delve a bit deeper into the topic of optimizing opacity and transparency.
Meshes and media with opacity less than 1.0 present their own challenges and
with optimization we can decrease render times by orders of magnitude.

4.6 Refractions and rays

The challenges boil down to the fact that if we can see through an object, we
now have to perform all the same sampling again for any new intersection as
the ray traverses the scene. Depending on ray depth, this can repeat multiple
times for every ray tree fired. This can be expensive, and if we are not careful
with our shading pipeline, extremely wasteful. Let us start by taking a look at
the way a ray propagates through the scene.

Figure 15: Ray depth in a raytracer. Each ray type is numbered: camera rays(blue),
reflection rays (red) and refraction rays(green). If you count through each ray path, no ray
depth limit is violated, yet you can see how complex even relatively small limits can become.

RAY DEPTH EXPLAINED

AA_samples = 1

reflection depth = 1

refraction depth = 16

total depth = 19

11

2

0
1

2

3 4

5
6

4

3 1

1 4

camera

object (double-sided

glass sphere)

This setup is pretty simple, but you can see in Figure 15 how even a sin-
gle ray can exponentially increase in complexity. Remember that the moment
the ray goes through that first glass surface, it is now considered a refraction
ray. This situation is often encountered in refractions through the outer layer

17

of eyeballs or when the camera is shooting through a glass pane. In that case,
only AA_samples and GI_refraction_samples are our only controls for resolv-
ing noise and we want to avoid increasing AA_samples when possible. Things
become even more complex when we consider how we want to handle shadows.

So let us take a look at an example with Electro. The shot, ee4418, shows
Electro transforming into electrical energy (Refer to Figure 16). When these
frames came to our attention, the particle renders had been the slowest and had
been running for a week. A lot of the frames were getting stuck at 95%. In
the logs for successful contiguous render frames, the time between most buckets
up until 95% was approximately 3 mins, with the remaining 5% taking over 70
single-core hours.

Figure 16: Electro transforming in ee4418. Before optimization, the particle renders were
taking over 70 hours.

Image courtesy Columbia Pictures ©2014 Columbia Pictures Industries, Inc. All rights
reserved.

As can be seen in Figure 17, there is not too much that is visible, so upon first
glance, it is hard to determine what the problem is. Note that barely anything

18

is visible in the frame; that is alot of expense for little payoff. Checking the
geometry in the viewer, the problem becomes immediately visible.

Figure 17: An example frame from a sequence that sat at 95% completion for 70+ hours!

The bucket that represented the last 5% lay on the loci for spark generation.
Zooming in, they were tiny bundles of millions of triangles, taking up less than
a pixel in screenspace (Refer to Figure 18). Literally, a single pixel was taking
orders of magnitude longer than the rest of the frame! Basically, the problem is
the transparency combined with the sheer number of overlapping triangles. This
would be a problem for any raytracer: it relates to how the renderer determines
where any given ray intersects geometry [1].

Figure 18: The fx passes in the Katana viewer. Note the jumble of polys shown exists in a
space smaller than 1 pixel in screenspace

(a) The geo in the Katana viewer (b) and close-up!

Normally, the camera ray would traverse through the triangles until opacity
hits a defined threshold, where it will stop calculating and exit. In this case,
the opacity is zero, so there is no opacity accumulated to cause a ray exit and
so Arnold has to try and determine the intersection with hundreds of thousands
of triangles for each ray. With the enormous amount of overlapping meshes, the
triangles cannot easily be isolated, so the raytracer effectively must test each
one in a linear search (Refer to Figure 19).

19

Figure 19: Acceleration using BVH trees

T2

T3

T4

T5

L1

L2

L3

L4

L5

L6

L7

L8

T1

(a) In a simple scene, the triangles are easy
to partition.

(b) In a complex scene, with many overlap-
ping triangles, the scene can become impossi-
ble to partition.

Camera rays are used to calculate transparency so this would still be true
even if all non-camera rays are turned off. The combination of low opacity plus
the massive numbers of overlapping triangles are what takes 70+ hours.

So any solution will rely on either reducing geometry or increasing opacity
to force the ray to stop calculating faster. You can double check the veractiy
of this theory by eliminating the opacity map and rendering with a lambert
shader; the render time is reduced to seconds! Obviously a lambertian render
is not deliverable, so here are some possible solutions:

1. Increase opacity in and around those bundles so that the ray stops faster
or implement a transparency threshold that could be increased to cull rays
even faster.

2. Re-simulate with less geometry in those bundles and create a ramp on the
width This is so that the width within the bundles is small, which would
lead to fewer intersecting traingles.

3. Eliminate the OpacMap altogether by using color. While not as sophis-
ticated, if these effects are to be transparent and heavily processed, the
difference may not be particularly noticeable.

5 Conclusion

Raytracing presents an opportunity to implement a robust, consistent and ef-
ficient rendering pipeline in a VFX facility. Since adopting a pure raytracing
environment at SPI, the level of imagery and performance has been propelled
to a new echelon of photorealism and sophistication. But the system relies
on the thoughtful optimization of sequences to prevent untenable render times

20

and substandard performance; it would be easy to write off an entire rendering
pipeline for lack of knowledge on rendering optimization! In this discussion, we
have presented a number of strategies technical directors can use to pre-empt
and address inefficiencies and wastefulness.

The key is to understand the conditions that lead to problematic renders
and address them before they are incorporated into a shot. Develop a process
and a checklist to help progress through the optimization process: Are all the
textures tiled?, Has light linking been used effectively?, Have I checked the Sub-
divisions using a wireframe render?, Am I using a lot of direct light sources?,
Can I reduce the number of lights?, Do I have lights with excessively large radii
or intersecting geometry?, Is there a lot of noise on bumpy objects?, Do all of
my direct light sources need to contibute to the GI solution? and Have I opti-
mized the ray visibility of objects in your shot? These questions and others you
develop can help to overcome our Option 2 and Option 3 and gain artefact-free
renders, fast.

However, the solutions here are the tip of the iceberg and this work extends
far deeper. In this presentation we have not even discussed subsurface scattering,
hair or explored optimizing volumes. At SPI, it has been a process over years
to collate, organize and formalize strategies for render optimization and in hand
with that, education of artists and supervisors about best practices for producing
the best images in the shortest amount of time.

6 Acknowledgments

Thanks to Sony Pictures Imageworks and CTO Rob Bredow and for supporting
the continued development of raytracing at SPI; the SPI Arnold Team both past
and present, Larry Gritz, Christopher Kulla, Cliff Stein, Alejandro Contya and
Rene Limberger for your inspiration and guidance.

References

[1] T. L. KAY and J. T. KAJIYA. Ray tracing complex scenes. In Computer
Graphics (Proceedings of ACM SIGGRAPH), volume 20, pages 269–278,
1986.

[2] E. VEACH and LEONIDAS J. G. Optimally combining sampling techniques
for monte carlo rendering. In SIGGRAPH 95 Proceedings, pages 419–428.
Addison-Wesley, 1995.

21

Click to edit master sub title style
CLICK TO EDIT MASTER TITLE STYLE

Presented by Paul Beilby, Head of Lighting and Look
Development at Framestore
Siggraph
August 2014

HOW THE USE OF RAYTRACING & PHYSICAL
PLAUSIBLE SHADERS CHANGED
COMMUNICATION BETWEEN VFX ARTISTS
AND FILM ARTISTS IN THE MAKING OF
GRAVITY

Click to edit master sub title style
CLICK TO EDIT MASTER TITLE STYLE

© Framestore 2014

• Early involvement

• Director and Producer in the building though out the project

• Pre and post-production happened at Framestore

• Framestore heavily involved with shooting process

• Close relationship between Framestore, Alfonso Cuaron, Producers, Editorial, Art Dept and other departments

Everyone together
Gravity : Start Early and Change all the Rules of Post Production

© Framestore 2014

PRE-VISUALISATION
& LIGHTING PLAN
DEVELOPMENT

© Framestore 2014

• Storyboards used for first pass

• Alfonso Cuaron worked directly with framestore
animators during previs

• Long shot durations

• Vcam - Mocap virtual camera

• Framestore collaboration established with The Third
Floor

• Framestore and 3rd floor are able to share assets

• Allows head start in planning for all post production
departments

The ‘first draft’ of the film
IN HOUSE PREVIS FIRST STEP IN COLLABORATION

© Framestore 2014

• Shot Layout Is Finalised
before shooting begins
this gives huge
advantages in planning
what will be necessary
in post production

• This knowledge allows
us to evaluate current
and future rendering
techniques

!

Final Previs
PREVIS

© Framestore 2014

• Working closely with Director
of Photography: Emmanuel
“Chivo” Lubezki

• Planning
• Light Directions
• Shadows
• Hard light

• Physically Based Lighting
• Uses approximate low res

assets
• Exterior Lights

• Sun
• Earth

• Common language

Pre-shoot Cinematography
PRE-LIGHT

© Framestore 2014© Framestore 2013

TECHNICAL REQUIREMENTS
OF PRELIGHT

• Accurate physical plausible light interaction	

• Real time feedback (nearly)	

• Complete flexibility for lighting changes	

• Common language with Director of Photography	

• All “virtual” lighting must be able to be recreated on set	

• Very Long Takes

© Framestore 2014

• Completely Reyes based pipeline

• All secondary Light bounces are produced approximately
by baking

• Slow set up time

• Requires Strong Technical Knowledge

• Not Real Time!

• Not flexible to quick turn around lighting changes

• Not always physical plausible

• Many virtual lighting techniques do not have comparable
on set solution

Reyes & Baking
FRAMESTORE LIGHTING AND RENDERING PIPELINE PRE-GRAVITY

© Framestore 2014

• IPR gives instant feedback
to lighting changes

• All secondary Light bounces
are accurately represented

• Fast set up time

• Common language with
Non VFX artists

• Always physical plausible

• All lighting techniques have
comparable on set lighting
technique

• No heavy bake assets so
can be done without
connection to main studio
servers

Moving to path tracer
GRAVITY PRELIGHT PIPELINE

© Framestore 2014

• Many common post production challenges are solved
before shoot begins

• Builds much stronger relationship with on set crew

• Allows both on set and vfx artists to plan lighting much
further ahead without onset prices!

• Gives actors and actresses excellent visual feedback
while shooting

• Gives forewarning of the lighting and look development
challenges ahead

Advantages of Prelight Stage

© Framestore 2014

• We cannot assume the sun will be a common position!

• All of the assets will be viewed from wide to extreme
close up from all angles in extreme lighting conditions

• Much of the lighting will be indirect

• A huge amount of detail will be required on all assets

• The shots are extremely long so many vfx short cuts will
not be able to be used i.e.all assets are hero assets and
require hero detail

• The shot length means that all lighting transitions will
happen during the shot

• Most shots will be 90% CGI for most of the movie

• Only Photo real lighting and assets will be accepted by
the Director.

• CONCLUSION : Our current reyes rendering pipeline is
not going to work for our Production Quality Assets.

we are going to need a bigger boat!
What We Learned During the Pre light Stage

Click to edit master sub title style
CLICK TO EDIT MASTER TITLE STYLE

CONVERTION FROM VIRTUAL PATH TRACER LIGHTING TO
ONSET

!

© Framestore 2014

• What did we need to consider?
• Long shots in Zero G
• Exterior shots: only shoot faces
• Light rigs
• Break long shots into “shoot

setups” with “beats”
• Add bounce cards
• Lighting transitions
• Rotating environment instead of

actor
!
• Opening Shot

• 12.5 minutes
• 17 setups joined together 

• Initial Tech Vis
• How can each setup be shot?
• How do camera and light move?

How to how do we covert from virtual to on set lighting in zero-g
PLANNING

© Framestore 2014

• Generate Virtual Cameras
• From point of view of actor
• Apply “reversed” animation

moves to give the impression
extra movement and rotation of
the actor

• Check safety of actor
• Robot/Rig tolerances

!
• From Prelight generate

environment maps from point of
view of actor to use as :
!

• Eye line Markers
• Character lighting in LightBox 

Converting vitual cameras and lighting for on set shooting
TECH-LAYOUT

© Framestore 2014

SHOOTING GRAVITY
R-Stage

© Framestore 2014

• The “light box”

Interactive Lighting Environment
Path tracer generating environments
Projected around the actor

LED PANELS

© Framestore 2014

• A typical Shot

• Lightbox

• Robot

• Tilt Rig

Previs Animation to SFX Robot Rig
SHOOTING IN THE LIGHTBOX

Pre-light Plate

CompTech Layout

© Framestore 2014

Inside the lightbox
VFX Action Lighting and Feedback for Actors

• All robot moves tested
• Gives visual feedback of

virtual action
• Safe
• Eyes reflect action for

integration
• Lighting comes directly

from VFX assets
• Small adjustments

• On the stage
• Shared Tools
• Framestore/Bot & Dolly

• Bigger adjustments
• Back office

© Framestore 2014

• Many required on
set lighting
direction
adjustments are
applied in realtime
by Framestore “on
set” Lighting Team
and new lighting
data is supplied
back to “Virtual“
Lighting Team
back at the studio

An unusual way to make a movie
SHOOTING GRAVITY

© Framestore 2014

• All robot moves tested
• Within specifications
• Clearance
• Safety
• Cabling
• Lighting

• Small adjustments
• On the stage
• Shared Tools
• Framestore/Bot & Dolly

• Bigger adjustments
• Back office

Framestore Shepperton
LIGHTING ENVIRONMENT SHOOT TESTING

© Framestore 2014

• Animated realtime
lighting transitions

• Actors eyes reflect
virtual action for
increased
integration

• Accurate bounce
light from inside of
helmet

Physically accurate Lighting Integration
THE LIGHT BOX

© Framestore 2014

• Combined with traditional
lights to match virtual
directional lights with hard
shadows

• Robot or Manually
Controlled

Adding to the box
THE LIGHT BOX

© Framestore 2014

• Complex Lighting Interaction
with Soyuz

• Lightbox

• Robot Controlled Lighting

• Turntable

• Set Piece Bounce Cards

• Wires

• Animated action assets
environment maps
generated in mental ray

Lightbox & Special Cases
SHOOTING GRAVITY

© Framestore 2014© Framestore 2013

• Set pieces and on set
lighting built to
matches virtual
environments for
interaction

• On Set light direction
matches virtual sun
generated by lightbox
panel and conventional
light combination

Other uses: Walls of bounced sunlight
THE LIGHT BOX

© Framestore 2014

• ‘Flying Shot’

• 12 Wire Rig

• Programmed Move

• Puppeteers

• Proxy set added for
lighting interaction

• Join seamlessly to Lightbox
shot

Using all techniques at once to match pre light action
INTERIOR SHOT

© Framestore 2014

LIGHTING
& LOOK DEVELOPMENT

© Framestore 2014

Advantages of path tracer for Gravity

• Moving to a pathtracer allows us to alter lighting transitions without rebaking

• Arnold very memory efficient allows us to use hero assets though out shot as we have no
opportunity to swap

• No bake data : would be unmanageable on shots of this length

• Physically accurate lighting model no approximation

• Easy, flexible lighting set up on all shots

!

• Disadvantages

• Extreme lighting environment “worse case” for path tracer specular noise

• Framestore crew must be trained in path tracing approaches and reyes assumptions must
be unlearned!

• Rendertime in stereo

We must completely change our pipeline to allow for huge hero assets under extreme lighting conditions
Framestore moves to arnold

What We Learned During the Pre light Stage

© Framestore 2014

Fast image prototyping using in-house co-shaders
LOOKDEV STAGE 1 VEHICLES

• NASA reference material

• no access to real
assets for texture
reference

• Variable unknown
lighting environment

!

• Use Physically based
rendering to match lighting
environment

• ‘Arnold’ software

• Path tracing

• Use coshaders for fast
prototyping of materials
and texture feedback

© Framestore 2014

Use of reference material
LIGHTING and LOOK DEVELOPMENT

• Advantages

• Great for client
approval!

!

•Disadvantages

•Material quality can be
difficult to judge in
unknown environment

•No guarantee that all
assets will work
together when
combined

•No bench mark for
render time

© Framestore 2014

Use of reference material
LIGHTING and LOOK DEVELOPMENT

• Advantages

• Great for client
approval!

!

•Disadvantages

•Material quality can be
difficult to judge in
unknown environment

•No guarantee that all
assets will work
together when
combined

•No bench mark for
render time

© Framestore 2014

From wide to close up
LIGHTING and LOOK DEVELOPMENT

• All assets needed to work
from all angles from wide
to extreme close ups

• Complex modelled detail

• High resolution texture
maps

• Long Rendertimes

© Framestore 2014

• All Assets could not be loaded into memory proxy geo
used in lighting scenes and then replaced at render
time

Space station
COMBINING ASSETS

© Framestore 2014

• Controlled lighting
environment

• Development Lighting
HDRI matches photo
reference

• Polarised lighting used
to match diffuse
component

Controlled ReferenceEnvironment
PROP LOOK DEVELOPMENT

© Framestore 2014

• Suits were
tailored for cfx

• Cloth emulated
with ptm for
thread detail

• Uv in cloth
direction

• Fur system used
for extra detail

• Displacement
shaders
replacement by
high resolution
mesh

Suits: NASA suit
SUIT LOOK DEVELOPMENT

© Framestore 2014

• repeat until
done !

Iterations
LOOK DEVELOPMENT

© Framestore 2014

• Data captured under
Neutral lighting

• Captured using ‘Mova’

• 5 cameras

DIGITAL HEADS

© Framestore 2014

• If smaller then 1/8 screen
height

• Animated Data captured
for each subsurface layer

• Extremely detailed
animated texture maps
created at high resolution
for Displacement and
Specular Response

DIGITAL HEADS

© Framestore 2014

• Digital heads used when
action is too dangerous to
be shot

• Visual reference for the
actor provided by a wall of
LED panels of Prelight

DIGITAL HEADS

© Framestore 2014

• Arnold allowed low
memory profile for large
amount of texture detail
and data.Captured using
‘Mova’

• Raytracing subsurface
allowed accurate light
modelling from distant
light sources and indirect
bounce

• Easy set up

• No technical knowledge
of input data to light in
shots

DIGITAL HEADS

© Framestore 2014

• Could not achieve required
detail with shadow maps

• Shadow maps calculation was
to slow for quick turnaround of
client weather requests

• Moved to ray marching
technique using Arnold

• Also allowed increased
physical accuracy in lighting
scatter model

Shading & Rendering
EARTH

© Framestore 2014

• All clouds were hand
painted

• Paintings were converted
into 3D volumes

• Ability to paint on multiple
altitudes, and to hand
dress in varying noise
patterns

• Final clouds scattered and
reflected into the overall
lighting simulation

• Reyes system could not
hold all data in memory

• Arnold Volume renders
gave accurate scatter and
lighting interaction on
large extremely detail
cloud data from Nasa.

Clouds and Weather
EARTH

© Framestore 2014

• Analyse all materials for assets and identify most efficient

• Where possible replace expensive co-shader networks with optimised Monolithic Shaders

• These “monoliths” include automatic rayswitching to simpler shading models where
possible

• Combine multilayer textures and shader based colour corrections back into the colour
map

• Replace multilayer brdfs with IOR Maps and Roughness maps where possible

• Cache as much data as possible between left and right eye to reduce stereo costs

!

!

• Disadvantages

• Increases the number of texture map iterations

• Optimisation of shaders requires higher technical knowledge of path tracing

Once the Look development is physically plausible and cleared by client it is time to optimise
Two Stage LookDevelopment

© Framestore 2014

• Lighting environment calibrated to 18%
grey ball and macbeth chart

• Diffuse macbeth chart gives value of
0.038 on black and .91 in white under
this lighting environment

• High contrast environment used to
check for specular response issues

• Same environment used for all assets

• Checks brdf balance and bounce
response

• Checks Albedo response

• Checks render time

!

• Not good for client presentations

Calibrated Neutral Lighting Environment
Physical Plausibility and Optimisation Stage 2

© Framestore 2014

• All props
tested in
shoot and
calibrated
lighting
environment

Props
PROPS Testing and Optimisation

© Framestore 2014

Lighting & renders
LOOK DEVELOPMENT

© Framestore 2014

• Reducing Render time

• With a path tracing solution visually successful images are much easier to achieve
however optimisation is far more important than with a reyes system. Every shader
network should be analysed for speed as well as look achieved.

• Don’t render till it’s ready!

• We employed a system of very cheap Qc renders to check that all assets were working
before even starting a lighting render

• Because all shader are physically accurate you do not need to render all frames to test
lighting, all lighting setups on Gravity where tested every 10th frame for clearance

• All shots on Gravity were finalled with less than 1.5 2k full production iterations (and
the 0.5 is because the Director changed his mind!)

• Lighting in a extreme environment

• Noise in direct specular : use motion vectors to sample specular “through time”

• Increase roughness in secondary bounces

Extreme lighting conditions, huge assets and shots of 12.5 minutes
Challenges in Lighting

© Framestore 2014

• Entire
Framestore
pipeline now
path tracer
based

The finished product
LIGHTING

© Framestore 2014

FINISHING UP

© Framestore 2014

• Peak crew: 280

• Total crew: 440

• Project duration: 3 years

• 500Tb live data at any one time

• 15,000 dedicated processors

STATS & FACTS

© Framestore 2014

• 7,000 years of computation

• production notes: 2.1 millions words (or 4 copies of War
and Peace)

• greediest process: reading over 1.5 million files

• longest single-frame render: 380+ hours (before
optimisation !)

!

Unique collaboration between Film-Makers and
Visual Effects

MILESTONES

© Framestore 2014

"I was so extravagantly impressed by the portrayal of the reality of zero gravity…"
Buzz Aldrin

Our most critical audience…
CONCLUSION

	01 reyes_to_rays_complete NEW
	02 soren_final_coursenotes NEW
	03 best_practices_complete NEW
	04 nonclearimagesremoved

