|
# cquadtree.py
# A relatively simple example of using the Node and QuadTree
# class.
# Malcolm Kesson Dec 19 2012
from quadtree import Node, QuadTree
from distances import pnt2line
import random
#____UTILITY PROCS_______________________________________
# Returns the length of a vector "connecting" p0 to p1.
# To avoid using the sqrt() function the return value is
# the length squared.
def dist_sqrd(p0, p1):
x,y,z = p0
X,Y,Z = p1
i,j,k = (X - x, Y - y, Z - z)
return i * i + j * j + k * k
#_______________________________________________________
def getedges(rect):
x0,z0,x1,z1 = rect
edges = ( ((x0,0,z0),(x1,0,z0)), # top
((x1,0,z0),(x1,0,z1)), # right
((x1,0,z1),(x0,0,z1)), # bottom
((x0,0,z1),(x0,0,z0))) # left
return edges
#_______________________________________________________
class CNode(Node):
#_______________________________________________________
# Overrides the base class method.
# Ensures Node.subdivide() uses instances of our custom
# class rather than instances of the base 'Node' class.
def getinstance(self,rect):
return CNode(self,rect)
#_______________________________________________________
# Overrides the base class method.
# Test if the vertices of a rectangle spans the circumference
# of a circle(s). To avoid sampling errors the proc returns True
# if any edge lies within the radius of any circle. However, the
# 'edge test' is applied only to rectangles whose parent node has
# a depth of recursion less than a specific (arbitary) value.
def spans_feature(self, rect):
x0,z0,x1,z1 = rect
if self.depth < 3: # this may require adjustment
for circle in CQuadTree.circles:
rad,x,y,z = circle
edges = getedges(rect)
for edge in edges:
dist,loc = pnt2line( (x,0,z), edge[0], edge[1] )
if dist <= rad:
return True
verts = [(x0,0,z0),(x0,0,z1),(x1,0,z1),(x1,0,z0)]
for circle in CQuadTree.circles:
rad,x,y,z = circle
rad_sqrd = rad * rad
center = (x,y,z)
span = 0
for vert in verts:
d = dist_sqrd(vert,center)
span += (d <= rad_sqrd)
if span > 0 and span < 4:
return True
return False
class CQuadTree(QuadTree):
circles = [] # list of tuples (rad,x,y,z)
#_______________________________________________________
def __init__(self, rootnode, minrect, circles):
CQuadTree.circles = circles
QuadTree.__init__(self, rootnode, minrect)
#_______________________________________________________
# Returns a string containing the rib statement for a
# four sided polygon positioned at height "y".
def RiPolygon(rect, y):
x0,z0,x1,z1 = rect
verts = []
verts.append(' %1.3f %1.3f %1.3f' % (x0,y,z0))
verts.append(' %1.3f %1.3f %1.3f' % (x0,y,z1))
verts.append(' %1.3f %1.3f %1.3f' % (x1,y,z1))
verts.append(' %1.3f %1.3f %1.3f' % (x1,y,z0))
rib = '\tPolygon "P" ['
rib += ''.join(verts)
rib += ']\n'
return rib
#_______________________________________________________
if __name__=="__main__":
rootrect = [-2.0, -2.0, 2.0, 2.0]
resolution = 0.02
circles = []
random.seed(1)
for n in range(17):
r = random.uniform(0.2, 0.8)
x = random.uniform(-2.0, 2.0)
z = random.uniform(-2.0, 2.0)
circles.append( (r,x,0,z) )
#circles = [(1.9,0,0,0),(1.0,0.95,0,0)]
rootnode = CNode(None, rootrect)
tree = CQuadTree(rootnode, resolution, circles)
# Output RenderMan polygons for each node
ribpath = '/Users/mkesson/leaves.rib'
f = open(ribpath,'w')
f.write('AttributeBegin\n')
for node in CQuadTree.allnodes:
height = node.depth * 0.1
if node.depth == CQuadTree.maxdepth:
f.write('\tColor 0 .5 0\n')
else:
f.write('\tColor 1 1 1\n')
f.write(RiPolygon(node.rect, height))
f.write('AttributeEnd\n')
f.close()
print('Wrote %d polygons' % len(CQuadTree.leaves))
|